
Concurrency Among Strangers

Programming in E as Plan Coordination

Mark S. Miller1,2, E. Dean Tribble, and Jonathan Shapiro1

1 Johns Hopkins University
2 Hewlett Packard Laboratories

Abstract. Programmers write programs, expressing plans for machines
to execute. When composed so that they may cooperate, plans may in-
stead interfere with each other in unanticipated ways. Plan coordination
is the art of simultaneously enabling plans to cooperate, while avoid-
ing hazards of destructive plan interference. For sequential computation
within a single machine, object programming supports plan coordination
well. For concurrent computation, this paper shows how hard it is to use
locking to prevent plans from interfering without also destroying their
ability to cooperate.

In Internet-scale computing, machines proceed concurrently, inter-
act across barriers of large latencies and partial failure, and encounter
each other’s misbehavior. Each dimension presents new plan coordina-
tion challenges. This paper explains how the E language addresses these
joint challenges by changing only a few concepts of conventional sequen-
tial object programming. Several projects are adapting these insights to
existing platforms.

1 Introduction

The fundamental constraint we face as programmers is complexity. It might seem
that we could successfully formulate plans only for systems we can understand.
Instead, every day, programmers successfully contribute code towards working
systems too complex for anyone to understand as a whole. We make use of
modularity and abstraction mechanisms to construct systems whose component
plans we can understand piecemeal, and whose compositions we can understand
without fully understanding each plan being composed.

Programmers are not to be measured by their ingenuity and their logic
but by the completeness of their case analysis.

—Alan Perlis

In the human world, when you plan for yourself, you make assumptions about
future situations in which your plan will unfold. Occasionally, someone else’s
plan may interfere with yours, invalidating the assumptions on which your plan
is based. To plan successfully, you need some sense of which assumptions are
usually safe from such disruption. You do not need to anticipate every possible
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contingency, however. If someone does something you did not expect, you will
probably be better able to figure out how to cope at that time anyway.

To formulate plans for machines to execute, programmers must also make
assumptions. When separately formulated plans are composed, conflicting as-
sumptions can cause the run-time situation to become inconsistent with a given
plan’s assumptions, leading it awry. By dividing the state of a computational sys-
tem into separately encapsulated objects, and by giving objects limited access
to each other, we limit outside interference and extend the range of assump-
tions our programs may safely rely upon.1 Beyond these assumptions, correct
programs must handle all relevant contingencies. By abstraction, we limit one
object’s need for knowledge of others, reducing the number of cases which are
relevant. However, even under sequential and benign conditions, the remaining
case analysis can still be quite painful.

Under concurrency, an object’s own plans may destructively interfere with
each other. In distributed programming, asynchrony and partial failure limit an
object’s local knowledge of relevant facts, increasing the number of relevant cases
it must consider. In secure programming, we carefully distinguish those objects
whose good behavior we rely on from those we don’t, but we seek to cooperate
with both. Confidentiality further constrains local knowledge; deceit and mal-
ice are further sources of possible plan interference. Each of these dimensions
threatens an explosion of new cases we must consider. To succeed, we must find
ways of reducing the size of the resulting case analysis.

Previous papers have focused on E’s support for limited trust within the
constraints of distributed systems [MMF00, MYS03, MS03, MTS04]. This paper
focuses on E’s support for concurrent and distributed programming within the
constraints of limited trust.

2 Overview

Throughout this paper, we do not seek universal solutions to coordination prob-
lems, but rather, abstraction mechanisms adequate to craft diverse solutions
adapted to the needs of many applications. We illustrate many of our points
with a simple example, a “statusHolder” object implementing the listener pat-
tern.

The Sequential StatusHolder introduces the statusHolder and examines its
hazards in a sequential environment.

Why Not Shared-state Concurrency shows several attempts at a conven-
tionally thread-safe statusHolder in Java and the ways each suffers from plan
interference.

A Taste of E shows a statusHolder written in E and explains E’s eventual-send
operator in the context of a single thread of control.

1 This view of encapsulation and composition parallels Hayek’s explanation of how
property rights protect human plans from interference and how trade brings about
their cooperative alignment [vH45]. See [MD88, TM02] for more.
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Communicating Event-Loops explains how the statusHolder handles con-
currency and distribution under benign conditions.

Protection from Misbehavior examines how the plans coordinated by our
statusHolder are and are not vulnerable to each other.

Promise Pipelining introduces promises for the results of eventually-sent
messages, and shows how pipelining helps programs tolerate latency and how
broken promise contagion lets programs handle eventually-thrown
exceptions.

Partial Failure shows how statusHolder’s clients can regain access following a
partition or crash and explains the issues involved in regaining distributed
consistency.

The When-Catch Expression explains how to turn data-flow back into
control-flow.

From Objects to Actors and Back Again presents a brief history of E’s
concurrency control.

Related Work discusses other systems with similar goals, as well as current
projects adapting these insights to existing platforms.

Discussion and Conclusions summarizes current status, what remains to be
done, and lessons learned.

3 The Sequential StatusHolder

Throughout the paper, we will examine different forms of the listener pattern
[Eng97]. The code below is representative of the basic sequential listener pat-
tern.2 In it, a statusHolder object is used to coordinate a changing status be-
tween publishers and subscribers. A subscriber can ask for the current status of
a statusHolder by calling getStatus, or can subscribe to receive notifications
when the status changes by calling addListener with a listener object. A pub-
lisher changes the status in a statusHolder by calling setStatus with the new
value. This in turn will call statusChanged on all subscribed listeners. In this
way, publishers can communicate status updates to subscribers without knowing
of each individual subscriber.

We can use this pattern to coordinate several loosely coupled plans. For
example, in a simple application, a bank account manager publishes an account
balance to an analysis spreadsheet and a financial application. Deposits and
withdrawals cause a new balance to be published. The spreadsheet adds a listener
that will update the display to show the current balance. The finance application
adds a listener to begin trading activities when the balance falls below some
threshold. Although these clients interact cooperatively, they know very little
about each other.

2 The listener pattern [Eng97] is similar to the observer pattern [GHJV94]. However,
the analysis which follows would be quite different if we were starting from the
observer pattern.
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public class StatusHolder {
private Object myStatus;
private final ArrayList<Listener> myListeners

= new ArrayList();

public StatusHolder(Object status) {
myStatus = status;

}
public void addListener(Listener newListener) {

myListeners.add(newListener);
}
public Object getStatus() {

return myStatus;
}
public void setStatus(Object newStatus) {

myStatus = newStatus;
for (Listener listener: myListeners) {

listener.statusChanged(newStatus);
}

}
}

Even under sequential and benign conditions, this pattern creates plan interfer-
ence hazards.

Aborting the wrong plan: If a listener throws an exception, this prevents
some other listeners from being notified of the new status and possibly aborts
the publisher’s plan. In the above example, the spreadsheet’s inability to
display the new balance should not impact either the finance application or
the bank account manager.

Nested subscription: The actions of a listener could cause a new listener to
be subscribed. For example, to bring a lowered balance back up, the finance
application might initiate a stock trade operation, which adds its own lis-
tener. Whether that new listener sees the current event, fails to see the cur-
rent event, or fails to be subscribed depends on minor details of the listener
implementation.

Nested publication: Similarly, a listener may cause a publisher to publish a
new status, possibly unknowingly due to aliasing. For example, during an
update, the invocation of setStatus notifies the finance application, which
deposits money into the account. A new update to the balance is published
and an inner invocation of setStatus notifies all listeners of the new balance.
After that inner invocation returns, the outer invocation of setStatus con-
tinues notifying listeners of the older, pre-deposit balance. Some of the listen-
ers would receive the notifications out of order. As a result, the spreadsheet
might leave the display showing the wrong balance, or worse, the finance
application might initiate transactions based on incorrect information.
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The nested publication hazard is especially striking because it reveals that prob-
lems typically associated with concurrency may arise even in a simple sequential
example. This is why we draw attention to plans, rather than programs or pro-
cesses. The statusHolder, by running each subscriber’s plan during a step of a
publisher’s plan, has provoked plan interference: these largely independent plans
now interact in surprising ways, creating numerous new cases that are difficult
to identify, prevent, or test. Although these hazards are real, experience suggests
that programmers can usually find ways to avoid them in sequential programs
under benign conditions.

4 Why Not Shared-State Concurrency

With genuine concurrency, interacting plans unfold in parallel. To manipulate
state and preserve consistency, a plan needs to ensure others are not manipu-
lating that same state at the same time. This section explores the plan coor-
dination problem in the context of the conventional shared-state concurrency-
control paradigm [VH04], also known as shared-memory multi-threading. We
present several attempts at a conventionally thread-safe statusHolder—searching
for one that prevents its clients from interfering without preventing them from
cooperating.

In the absence of real-time concerns, we can analyze concurrency without
thinking about genuine parallelism. Instead, we can model the effects of concur-
rency as the non-deterministic interleaving of atomic units of operation. We can
roughly characterize a concurrency-control paradigm with the answers to two
questions:

Serializability: What are the coarsest-grain units of operation, such that we
can account for all visible effects of concurrency as equivalent to some fully
ordered interleaving of these units [IBM68]? For shared-state concurrency,
this unit is generally no larger than a memory access, instruction, or system
call—which is often finer than the “primitives” provided by our programming
languages [Boe05]. For databases, this unit is the transaction.

Mutual exclusion: What mechanisms can eliminate the possibility of some
interleavings, so as to preclude the hazards associated with them? For shared-
state concurrency, the two dominant answers are monitors [Hoa74, BH93]
and rendezvous [Hoa78]. For distributed programming, many systems restrict
the orders in which messages may be delivered [BJ87, Ami95, Lam98].

Java is loosely in the monitor tradition. Ada, Concurrent ML, and the syn-
chronous π-calculus are loosely in the rendezvous tradition. With minor adjust-
ments, the following comments apply to both.

4.1 Preserving Consistency

If we place our sequential statusHolder into a concurrent environment, publishers
or subscribers may call it from different threads. The resulting interleaving of
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Fig. 1. A correct program must both remain consistent and continue to make progress.
The sequence above represents our search for a statusHolder which supports both
well: (1) The sequential statusHolder. (2) The sequential statusHolder in a concurrent
environment. (3) The fully synchronized statusHolder. (4) Placing the for-loop outside
the synchronized block. (5) Spawning a new thread per listener notification. (6) Using
communicating event-loops.

operations might, for example, mutate the myListeners list while the for-loop
is in progress.

Adding the “synchronized” keyword to all methods of the above code causes
it to resemble a monitor. This fully synchronized statusHolder eliminates exactly
those cases where multiple plans interleave within the statusHolder. It is as good
at preserving its own consistency as our original sequential statusHolder was.

However, it is generally recommended that Java programmers avoid this fully
synchronized pattern because it is prone to deadlock [Eng97]. Although each lis-
tener is called from some publisher’s thread, its purpose may be to contribute
to a plan unfolding in its subscriber’s thread. To defend itself against such con-
current entry, the objects at this boundary may themselves be synchronized.
If a statusChanged notification gets blocked here, waiting on that subscriber’s
thread, it blocks the statusHolder, as well as any other objects whose locks are
held by that publisher’s thread. If the subscriber’s thread is itself waiting on one
of these objects, we have a classic deadly embrace.

Although we have eliminated interleavings that lead to inconsistency, some
of the interleavings we eliminated were necessary to make progress.

4.2 Avoiding Deadlock

To avoid this problem, [Eng97] recommends changing the setStatus method to
clone the listeners list within the synchronized block, and then to exit the block
before entering the for-loop, as shown by the code below. This pattern avoids
holding a lock during notification and thus avoids the obvious deadlock described
above between a publisher and a subscriber. It does not avoid the underlying
hazard, however, because the publisher may hold other locks.
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public void setStatus(Object newStatus) {
ArrayList<Listener> listeners;
synchronized (this) {

myStatus = newStatus;
listeners = (ArrayList<Listener>)myListeners.clone();

}
for (Listener listener: listeners) {

listener.statusChanged(newStatus);
}

}

For example, if the account manager holds a lock on the bank account during a
withdrawal, a deposit attempt by the finance application thread may result in
an equivalent deadlock, with the account manager waiting for the notification
of the finance application to complete, and the finance application waiting for
the account to unlock. The result is that all the associated objects are locked
and other subscribers will never hear about this update. Thus, the underlying
hazard remains.

In this approach, some interleavings needed for progress are still eliminated,
and as we will see, some newly-allowed interleavings lead to inconsistency.

4.3 Race Conditions

The approach above has a consistency hazard: if setStatus is called from two
threads, the order in which they update myStatus will be the order they enter
the synchronized block above. However, the for-loop notifying listeners of a later
status may race ahead of one that will notify them of an earlier status. As a
result, even a single subscriber may see updates out of order, so the spreadsheet
may leave the display showing the wrong balance, even in the absence of any
nested publication.

It is possible to adjust for these remaining problems. The style recommended
for some rendezvous-based languages, like Concurrent ML and the π-calculus,
corresponds to spawning a separate thread to perform each notification. This
avoids using the producer’s thread to notify the subscribers and thus avoids
the deadlock hazard—it allows all interleavings needed for progress. However,
this style still suffers from the same race condition hazards and so still fails
to eliminate the right interleavings. We could compensate for this by adding a
counter to the statusHolder and to the notification API, and by modifying the
logic of all listeners to reorder notifications. But a formerly trivial pattern has
now exploded into a case-analysis minefield. Actual systems contain thousands
of patterns more complex than the statusHolder. Some of these will suffer from
less obvious minefields.

This is “Multi-Threaded Hell”. As your application evolves, or as
different programmers encounter the sporadic and non-reproducible cor-
ruption or deadlock bugs, they will add or remove locks around different
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data structures, causing your code base to veer back and forth . . . , erring
first on the side of more deadlocking, and then on the side of more cor-
ruption. This kind of thrashing is bad for the quality of the code, bad
for the forward progress of the project, and bad for morale.

—An experience report from the development of Mojo Nation [WO01]

5 A Taste of E

Before revisiting the issues above, let’s first use this example to briefly explain
E as a sequential object language. (For a more complete explanation of E, see
[Sti04].) Here is the same statusHolder as defined in E.

def makeStatusHolder(var myStatus) {
def myListeners := [].diverge()
def statusHolder {

to addListener(newListener) {
myListeners.push(newListener)

}
to getStatus() { return myStatus }
to setStatus(newStatus) {

myStatus := newStatus
for listener in myListeners {

listener.statusChanged(newStatus)
}

}
}
return statusHolder

}
E has no classes. Instead, the expression beginning with “def statusHolder”
is an object definition expression. It creates a new object with the enclosed
method definitions and binds the new statusHolder variable to this object. An
invocation, such as “statusHolder.setStatus(33)”, causes a message to be
delivered to an object. When an object receives a message, it reacts according to
the code of its matching method. As with Smalltalk [GR83] or Actors [HBS73],
all values are objects, and all computation proceeds only by delivering messages
to objects.

From a λ-calculus perspective, an object definition expression is a lambda
expression, in which the (implicit) parameter is bound to the incoming message
and the body selects a method to run according to the message. The delivery of
a message to an object is the application of an object-as-closure to a message-as-
argument. An object’s behavior is indeed a function of the message it is applied
to. This view of objects goes back to Smalltalk-72 [GK76] and Actors, and is
hinted at earlier in [Hoa65]. Also see [SS04].

Unlike a class definition, an object definition does not declare its instance
variables. Instead, the instance variables of an object are simply the variables
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used freely within the object definition (which therefore must be defined in some
lexically enclosing scope). The instance variables of statusHolder are myStatus
and myListeners. Variables are unassignable by default; the “var” keyword
defines myStatus as an assignable variable. Square brackets evaluate to an im-
mutable list containing the values of the subexpressions (the empty-list in the
example). Lists respond to the “diverge()” message by returning a new mutable
list whose initial contents are a snapshot of the diverged list. Thus, myListeners
is initialized to a new, empty, mutable list, which acts much like an ArrayList.

E provides syntactic shorthands to use objects that define a “run” method
as if they were functions. The syntax for makeStatusHolder is a shorthand for
defining an object with a single “run” method. It expands to:

def makeStatusHolder {
to run(var myStatus) { ...

The corresponding function call syntax, “makeStatusHolder(44)”, is shorthand
which expands to “makeStatusHolder.run(44)”.Each time makeStatusHolder
is called, it defines and returns a new statusHolder.

5.1 Two Ways to Postpone Plans

The E code for statusHolder above retains the simplicity and hazards of the
sequential Java version. To address these hazards requires examining the under-
lying issues. When the statusHolder—or any agent—is executing plan X and
discovers the need to engage in plan Y , in a sequential system, it has two simple
alternatives of when to do Y :

Immediately: Put X aside, work on Y until complete, then go back to X .
Eventually: Put Y on a “to-do” list and work on it after X is complete.

The “immediate” option corresponds to conventional, sequential call-return con-
trol flow (or strict applicative-order evaluation), and is represented by the “.” or
immediate-call operator, which delivers the message immediately. Above, status-
Holder’s addListener method tells myListeners to push the newListener im-
mediately. When addListener proceeds past this point, it may assume that all
side effects it requested are done.

For the statusHolder example, all of the sequential hazards (e.g., Nested
Publication) and many of the concurrent hazards (deadlock) occur because the
statusChanged method is also invoked immediately: the publisher’s plan is set
aside to pursue the listener’s plan (which might then abort, change the state
further, etc.).

The “eventual” option corresponds to the human notion of a “to-do” list:
the item is queued for later execution. E provides direct support for this asyn-
chronous messaging option, represented by the “<-” or eventual-send operator.
Using eventual-send, the setStatus method can ensure that each listener will
be notified of the changed status in such a way that it does not interfere with
the statusHolder’s current plan. To accomplish this in E, the setStatus method
becomes:
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to setStatus(newStatus) {
myStatus := newStatus
for listener in myListeners {

listener <- statusChanged(newStatus)
}

}
As a result of using eventual-send above, all of the sequential hazards are ad-
dressed. Errors, new subscriptions, and additional status changes caused by lis-
teners will all take place after all notifications for a published event have been
scheduled. Publishers’ plans and subscribers’ plans are temporally isolated—so
these plans may unfold with fewer unintended interactions. For example, it can
no longer matter whether myStatus is assigned before or after the for-loop.

5.2 Simple E Execution

This section describes how temporal isolation is achieved within a single thread
of control. The next section describes how it is achieved in the face of concurrency
and distribution.

Fig. 2. An E vat consists of a heap of objects and a thread of control. The stack and
queue together record the postponed plans the thread needs to process. An immediate-
call pushes a new frame on top of the stack, representing the delivery of a message
(arrow) to a target object (dot). An eventual-send enqueues a new pending delivery on
the right end of the queue. The thread proceeds from top to bottom and then from left
to right.

In E, an eventual-send creates and queues a pending delivery, which repre-
sents the eventual delivery of a particular message to a particular object. Within
a single thread of control, E has both a normal execution stack for immediate
call-return and a queue containing all the pending deliveries. Execution proceeds
by taking a pending-delivery from the queue, delivering its message to its ob-
ject, and processing all the resulting immediate-calls in conventional call-return
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order. This is called a turn. When a pending delivery completes, the next one
is dequeued, and so forth. This is the classic event-loop model, in which all of
the events are pending deliveries. Because each event’s turn runs to completion
before the next is serviced, they are temporally isolated.

Additional mechanisms to process results and exceptions from eventual-sends
will be discussed in further sections below.

The combination of a stack, a pending delivery queue, and the heap of objects
they operate on is called a vat, illustrated in Figure 2.3 Each E object lives in
exactly one vat and a vat may host many objects. Each vat lives on one machine
at a time and a machine may host many vats. The vat is also the minimum
unit of persistence, migration, partial failure, resource control, and defense from
denial of service. We will return to some of these topics below.

6 Communicating Event-Loops

We now consider the case where our account (including account manager and
its statusHolder) runs in VatA on one machine, and our spreadsheet (including
its listener) runs in VatS on another machine.

In E, we distinguish several reference-states. A direct reference between two
objects in the same vat is a near reference.4 As we have seen, near references carry
both immediate-calls and eventual-sends. Only eventual references may cross vat
boundaries, so the spreadsheet holds an eventual reference to the statusHolder,
which in turns holds an eventual reference to the spreadsheet’s listener. Eventual
references are first class—they can be passed as arguments, returned as results,
and stored in data structures, just like near references. However, eventual ref-
erences carry only eventual-sends, not immediate-calls—an immediate-call on
an eventual reference throws an exception. Our statusHolder is compatible with
this constraint, since it stores, retrieves, and eventual-sends to its listeners, but
never immediate-calls them. Figure 3 shows what happens when a message is
sent between vats.

When the statusHolder in VatA performs an eventual-send of the
statusChanged message to the spreadsheet’s listener in VatS, VatA creates a
pending delivery as before, recording the need to deliver this message to this
listener. Pending deliveries need to be queued on the pending delivery queue of
the vat hosting the object that will receive the message—in this case, VatS. VatA
serializes (marshals) the pending delivery onto an encrypted, order-preserving
byte stream read by VatS. Should it ever arrive at VatS, VatS will unserialize it
and queue it on its own pending delivery queue.

Since each vat runs concurrently with all other vats, turns in different vats
no longer have actual temporal isolation. If VatS is otherwise idle, it may service
this delivery, notifying the spreadhseet’s listener of the new balance, while the
original turn is still in progress in VatA. But so what? These two turns can
3 Figures 2–5 were created by Ka-Ping Yee with input from the e-lang community.
4 For brevity, we generally do not distinguish a near reference from the object it

designates.
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Fig. 3. If the account manager and the spreadsheet are in separate vats, when the
account manager (1) tells the statusHolder that represents its balance to immediately
update, this (2) transfers control to the statusHolder, which (3) notes that its listeners
should eventually be notified. The message is (4) sent to the spreadsheet’s vat, which
queues it on arrival and eventually (5) delivers it to the listener, which updates the
display of the spreadsheet cell.

only execute simultaneously when they are in different vats. In this case, the
spreadsheet cannot affect the account manager’s turn-in-progress. Because only
eventual references span between vats, the spreadsheet can only affect VatA by
eventual-sending to objects hosted by VatA. This cannot affect any turn already
in progress in VatA—VatA only queues the pending delivery, and will service
it sometime after the current turn and turns for previously queued pending
deliveries, complete.

Only near references provide one object synchronous access to another.
Therefore an object has synchronous access to state only within its own vat.
Taken together, these rules guarantee that a running turn—a sequential call-
return program—has mutually exclusive access to everything to which it has
synchronous access. In the absence of real-time concerns, this provides all the
isolation that was achieved by temporal isolation in the single-threaded case.

The net effect is that a turn is E’s unit of operation. We can faithfully account
for the visible effects of concurrency without any interleaving of the steps within
a turn. Any actual multi-vat computation is equivalent to some fully ordered
interleaving of turns.5 Because E has no explicit locking constructs, computation

5 An E turn may never terminate, which is hard to account for within this simple
model of serializability. There are formal models of asynchronous systems that can
account for non-terminating events [CL85]. Within the scope of this paper, we can
safely ignore this issue.

The actual E system does provide synchronous file I/O operations. When these
files are local, prompt, and private to the vat accessing them, this does not violate
turn isolation, but since files may be remote, non-prompt, or shared, the availability
of these synchronous I/O operations does violate the E model.
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within a turn can never block—it can only run, to completion or forever. A vat
as a whole is either processing pending deliveries, or is idle when there are
no pending deliveries to service. Because computation never blocks, it cannot
deadlock. Other lost progress hazards are discussed in the section on “Datalock”
below.

As with database transactions, the length of an E turn is not predetermined.
It is a tradeoff left for the developer to decide. How the object graph is carved
up into vats and how computation is carved up into turns will determine which
interleaving cases are eliminated, and which must be handled explicitly by the
programmer. For example, when the spreadsheet was co-located with the status-
Holder, it could immediate-call both getStatus and addListener in order to
ensure that the spreadsheet’s cell sees exactly the updates to an initial valid
state. But when it can only eventual-send these messages, they may arrive at
the statusHolder interleaved with other messages. To relieve potentially remote
clients of this burden, the statusHolder should send an initial notification to
newly subscribed listeners:

to addListener(newListener) {
myListeners.push(newListener)
newListener <- statusChanged(myStatus)

}

6.1 Issues with Event-Loops

This architecture imposes some strong constraints on programming (e.g., no
threads or coroutines), which can impede certain useful patterns of plan cooper-
ation. In particular, recursive algorithms, such as recursive-descent parsers, must
a) happen entirely within a single turn, b) be redesigned (e.g., as a table-driven
parser), or c) if it needs external non-prompt input (e.g., a stream from the user),
be run in a dedicated vat. E programs have used each of these approaches.

Thread-based coordination patterns can typically be adapted to vat granu-
larity. For example, rather than adding the complexity of a priority queue for
pending deliveries, different vats would simply run at different processor priori-
ties. For example, if a user-interaction vat could proceed (has pending deliveries
in its queue), it should; a helper “background” vat (e.g., spelling check) should
consume processor resources only if no user-directed action could proceed. A
divide-and-conquer approach for multi-processing could run a vat on each pro-
cessor and divide the problem among them. The event-loop approach is unsuit-
able for problems that cannot easily be adapted to a message-passing hardware
architecture, such as fluid dynamics computation.

7 Protection from Misbehavior

When using a language that supports shared-state concurrency, one can choose
to avoid it and adopt the event-loop style instead. Indeed, several Java libraries,
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such as AWT, were initially designed to be thread-safe, and were then redesigned
around event-loops. Using event-loops, one can easily write a Java class equiva-
lent to our makeStatusHolder. If one can so easily choose to avoid shared-state
concurrency, does E actually need to prohibit it?

E uses the event-loop approach to simplify the task of preserving consistency
while maintaining progress. Preserving consistency stays simple for the status-
Holder only if it executes in at most one thread at a time. As we discussed
previously, the possibility of multiple threads would necessitate complex lock-
ing. If one of its clients could create a new thread and call it, then the simple
version of the statusHolder could not preserve consistency (i.e., it would need to
perform the complex locking mentioned in the previous section).

In the extreme case, one object may actively intend to disrupt the plans of
another. This leads us to examine plan coordination in the presence of malicious
behavior. The topic is of interest both because large and distributed systems in
practice need to handle potentially malicious components, and because analysis
of the malicious case can help uncover hazards that are already present in the
non-malicious case.

7.1 Defensive Correctness

If a user browsing a webserver were able to cause incorrect pages to be displayed
to other users, we would likely consider it a bug in the webserver—we expect
it to remain correct regardless of the client’s behavior. We call this property
defensive correctness : a program P is defensively correct if it remains correct
despite arbitrary behavior on the part of its clients. Before this definition can
be useful, we need to pin down what we mean by “arbitrary” behavior.

When we say that a program P is correct, this normally means that we
have a specification in mind, and that P behaves according to that specification.
There are some implicit caveats in that assertion. For example, P cannot behave
at all unless it is run on a machine; if the machine operates incorrectly, P on
that machine may behave in ways that deviate from its specification. We do not
consider this to be a bug in P , because P ’s correctness implicitly depends on
the machine’s correctness. If P ’s correctness depends on another component R ’s
correctness, we will say that P relies upon R . For example, a typical webserver
relies on the underlying machine and on operating system features such as files
and sockets. We will refer to the set of all elements on which P relies as P ’s
reliance set.6

We define Q’s authority as the set of effects Q could cause. With regard to
P ’s correctness, Q’s relevant authority is bounded by the assumption that every-
thing in P ’s reliance set is correct, since P was defined under this assumption.

6 The set of all things that P relies on is similar in concept to P’s “Trusted Computing
Base” or TCB. “Rely” articulates the objective situation (P is vulnerable to R), and
so avoids confusions engendered by the word “trust”.

While the focus in this paper is on correctness, a similar “reliance” analysis could
be applied to other program properties, such as promptness [Har85].
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For example, if a user could cause a webserver to show the wrong page to other
browsers by replacing a file through an operating system exploit, then the un-
derlying operating system would be incorrect, not the webserver. We say that P
protects against Q if P remains correct despite any of the effects in Q’s relevant
authority, that is, despite any possible actions by Q, assuming the correctness
of P ’s reliance set.

Now we can speak more precisely about defensive correctness. The “arbitrary
behavior” mentioned earlier is the combined relevant authority of an object’s
clients. P is defensively correct if it protects against all of its clients. The focus is
on clients in particular in order to enable the composition of correct components
into larger correct systems. If P relies on R , then P also relies on all of R ’s other
clients unless R is defensively correct. If R does not protect against its other
clients, P cannot prevent them from interfering with its own plan, which makes
it infeasible for P to ensure its own correctness. By not relying on its clients, R
enables them to avoid relying on each other.

This explains why it is important for E to forbid the spawning of threads. As
we saw earlier, it can be very difficult to write programs in which threads protect
against each other. Removing threads eliminates a key obstacle to defensive
correctness.

Correctness can be divided into consistency (safety) and progress (liveness).
An object that is vulnerable to denial-of-service by its clients may nevertheless
be defensively consistent. Given that all the objects it relies on themselves remain
consistent, a defensively consistent object will never give incorrect service to well-
behaved clients, but it may be prevented from giving them any service. While a
defensively correct object is invulnerable to its clients, a defensively consistent
object is merely incorruptible by its clients.

Different security properties are feasible at different granularities. Some con-
ventional operating systems attempt to provide support for protecting users from
each other’s misbehavior. But because programs are normally run with their
user’s full authority, all software run under the same account is mutually reliant:
since each is granted the authority to corrupt the others via underlying compo-
nents on which they all rely, they cannot usefully protect against such “friendly
fire”.7 Some operating system designs [DH65] support process-granularity de-
fensive consistency. Others, by providing principled controls over computational
resource rights [Har85, SSF99], can also protect against denial of service. Among
machines distributed over today’s Internet, cryptographic protocols help support
defensive consistency, but defensive correctness remains infeasible.

In most programming languages, all objects in the same process are mutually
reliant. A secure language is one which supports some useful form of protections
within a process. Among objects in the same vat, E supports defensive consis-
tency: Any object may go into an infinite loop, thereby preventing the progress
of all other objects within their vat. Therefore, within E’s architecture, defensive
correctness within a vat is impossible. With respect to progress, all objects within

7 See [SKYM04] for an unconventional way to use conventional OSes to provide greater
security.
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the same vat are mutually reliant. In many situations, defensive consistency is
adequate—a potential adversary often has more to gain from corruption than
denial of service. This is especially so in iterated relationships, since corruption
may misdirect plans but go undetected, while loss of progress is quite noticeable.

7.2 Principle of Least Authority (POLA)

Our statusHolder itself is now defensively consistent, but is it a good abstraction
for the account manager to rely on to build its own defensively consistent plans?
In our example scenario, we have been assuming that the account manager acts
only as a publisher and that the finance application and spreadsheet act only as
subscribers. However either subscriber could invoke the setStatus method. If
the finance application calls setStatus with a bogus balance, the spreadsheet
will dutifully render it.

This is a problem of access control. The statusHolder, by bundling two kinds
of authority into one object, encouraged patterns where both kinds of authority
were provided to objects that only needed one. This can be addressed by grouping
these methods into separate objects, each of which represents a sensible bundle
of authority.

def makeStatusPair(var myStatus) {
def myListeners := [].diverge()
def statusGetter {

to addListener(newListener) {
myListeners.push(newListener)
newListener <- statusChanged(myStatus)

}
to getStatus() { return myStatus }

}
def statusSetter {

to setStatus(newStatus) {
myStatus := newStatus
for listener in myListeners {

listener <- statusChanged(newStatus)
}

}
}
return [statusGetter, statusSetter]

}
Now the account manager can make use of makeStatusPair as follows:

def [sGetter, sSetter] := makeStatusPair(33)

The call to makeStatusPair on the right side makes four objects—an object rep-
resenting the myStatus variable, a mutable myListeners list, a statusGetter,
and a statusSetter. The last two each share access to the first two. The call
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to makeStatusPair returns a list holding these last two objects. The left side
pattern-matches this list, binding sGetter to the new statusGetter, and bind-
ing sSetter to the new statusSetter.

The account manager can now keep the new statusSetter for itself and give
the spreadsheet and the finance application access only to the new statusGetter.
More generally, we may now describe publishers as those with access to
statusSetterand subscribers as those with access to statusGetter.The account
manager can now provide consistent balance reports to its clients because it has de-
nied them the possibility of corrupting this service.

As with concurrency control, the key to access control is to allow the possibil-
ities needed for cooperation, while limiting the possibilities that would allow for
plan interference. We wish to provide objects the authority needed to carry out
their proper duties—publishers gotta publish—but little more. This is known
as POLA, the Principle of Least Authority (See [MS03] for the relationship be-
tween POLA and the Principle of Least Privilege [SS75]). By not granting its
subscribers the authority to publish a bogus balance, the account manager no
longer needs to worry about what would happen if they did. This discipline helps
us compose plans so as to allow well-intentioned plans to successfully cooperate,
while minimizing the kinds of plan interference they must defend against.

7.3 A Taste of E Across a Network

E’s computational model extends across the network. An eventual reference in
a vat can refer to an object in a vat on another machine; eventual-sends to that
reference are sent across an encrypted, authenticated link and posted as pending
deliveries for the target object on the remote vat.

E’s network protocol, Pluribus, actually runs between vats, not between ma-
chines. Therefore, we can ignore the distinction between vats and machines with-
out loss of generality. An incorrect machine is, from our perspective, simply a set
of incorrect vats; i.e., vats that do not implement the language and/or protocol
correctly. The design of Pluribus is beyond the scope of this document, but a
few words are in order.

Pluribus enforces characteristics of the E computational model, such as ref-
erence integrity, so that E programs can rely on those properties between vats
and therefore between machines. Even if a remote vat runs its objects in an un-
safe language like C++, other vats could still view it from a correctness point of
view as a set of (possibly incorrect) objects written in E. From the perspective of
other vats, the objects in the remote vat could collude and act arbitrarily within
the union of the authorities granted to any of them, but they cannot feasibly8

manufacture new authorities. Thus, if an object relies on another object in a
remote vat, then it also relies on that remote vat (because the remote object
relies on that vat).

8 Pluribus relies on the standard cryptographic assumptions that large random num-
bers are not feasibly guessable, and that well-accepted algorithms are immune to
feasible cryptanalysis.
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8 Promise Pipelining

The eventual-send examples so far were carefully selected to be evaluated only
for their effects, with no use made of the value of these expressions. This section
discusses the handling of return results and exceptions produced by eventual-
sends.

8.1 Promises

As discussed previously, eventual-sends queue a pending delivery and complete
immediately. The return value from an eventual-send operation is called a
promise for the eventual result. The promise is not a near reference for the
result of the eventual-send because the eventual-send cannot have happened yet
(i.e., it will happen in a later turn). Instead, the promise is an eventual-reference
for the result. A pending delivery, in addition to the message and reference to
the target object, includes a resolver for the promise, which provides the right
to choose what the promise designates. When the turn spawned by the eventual-
send completes, its vat reports the outcome to the resolver, resolving the promise
so that the promise eventually becomes a reference designating that outcome,
called the resolution.

Once resolved, the promise is equivalent to its resolution. Thus, if it resolves
to an eventual-reference for an object in another vat, then the promise becomes
that eventual reference. If it resolves to an object that can be passed by copy
between vats, then it becomes a near-reference to that object.

Because the promise starts out as an eventual reference, messages can be
eventually-sent to it even before it is resolved. Messages sent to the promise can-
not be delivered until the promise is resolved, so they are buffered in FIFO order
within the promise. Once the promise is resolved, these messages are forwarded,
in order, to its resolution.

8.2 Pipelining

Since an object can eventual-send to the promises resulting from previous
eventual-sends, functional composition is straightforward. If object L in VatL
executes

def r3 := x <- a() <- c(y <- b())

or equivalently

def r1 := x <- a()
def r2 := y <- b()
def r3 := r1 <- c(r2)

and x and y are on VatR, then all three requests are serialized and streamed
out to VatR immediately and the turn in VatL continues without blocking. By
contrast, in a conventional RPC system, the calling thread would only proceed
after multiple network round trips.
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Fig. 4. The three messages in def r3 := x <- a() <- c(y <- b()) are streamed out
together, with no round trip. Each message box “rides” on the reference it is sent on.
References x and y are shown with solid arrowheads, indicating that their target is
known. The others are promises, whose open arrowhead represents their resolvers,
which provide the right to choose their promises’ value.

Figure 4 depicts an unresolved reference as an arrow stretching between its
promise-end, the tail held by r1, and its resolver, the open arrowhead within the
pending delivery sent to VatR. Messages sent on a reference always flow towards
its destination and so “move” as close to the arrowhead as possible. While the
pending delivery for a() is in transit to VatR, so is the resolver for r1, so we send
the c(r2) message there as well. As VatR unserializes these three requests, it
queues the first two in its local to-do list, since their target is known and local. It
sends the third, c(r2), on a local promise that will be resolved by the outcome
of a(), carrying as an argument a local promise for the outcome of b().

If the resolution of r1 is local to VatR, then as soon as a() is done, c(r2) is
immediately queued on VatR’s to-do list and may well be serviced before VatL
learns of r1’s resolution. If r1 is on VatL, then c(r2) is streamed back towards
VatL just behind the message informing VatL of r1’s resolution. If r1 is on yet
a third vat, then c(r2) is forwarded to that vat.

Across geographic distances, latency is already the dominant performance
consideration. As hardware improves, processing will become faster and cheaper,
buffers larger, and bandwidth greater, with limits still many orders of magni-
tude away. But latency will remain limited by the speed of light. Pipes between
fixed endpoints can be made wider but not shorter. Promise pipelining reduces
the impact of latency on remote communication. Performance analysis of this
type of protocol can be found in Bogle’s “Batched Futures” [BL94]; the promise
pipelining protocol is approximately a symmetric generalization of it.

8.3 Datalock

Promise chaining allows some plans, like c(r2), to be postponed pending the
resolution of previous plans. We introduce other ways to postpone plans below.
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Using the primitives introduced so far, however, it is possible to create circular
data dependencies which, like deadlock, are a form of lost-progress bug. We call
this kind of bug, datalock. For example, the epimenides function below returns
a promise for the boolean opposite of flag.

var flag := true
def epimenides() { return flag <- not() }

If flag were assigned to the result of invoking epimenides eventually, datalock
would occur.

flag := epimenides <- run()

In the current turn, a pending-delivery of epimenides <- run() is queued, and
a promise for its result is immediately assigned to flag. In a later turn when
epimenides is invoked, it eventual-sends a message to the promise in flag, and
then resolves the flag promise to the new promise for the not() sent to that
same flag promise. The datalock is created, not because a promise is resolved
to another promise (which is acceptable and common), but because computing
the eventual resolution of flag requires already knowing it.

Although the E model trades one form of lost-progress bug for another, it is
still more reliable. As above, datalock bugs primarily represent circular depen-
dencies in the computation, which manifest reproducibly like normal program
bugs. This avoids the significant non-determinism, non-reproducibility, and re-
sulting debugging difficulty of deadlock bugs. Anecdotally, in many years of
programming in E and E-like languages and a body of experience spread over
perhaps 60 programmers and two substantial distributed systems, we know of
only two datalock bugs. Perhaps others went undetected, but these projects did
not spend the agonizing time chasing deadlock bugs that projects of their nature
normally must spend. Further analysis is needed to understand why datalock
bugs seem to be so rare.

8.4 Explicit Promises

Besides the implicit creation of promise-resolver pairs by eventual-sending, E
provides a primitive to create these pairs explicitly. In the following code

def [p, r] := Ref.promise()

p and r are bound to the promise and resolver of a new promise/resolver pair.
Explicit promise creation gives us yet greater flexibility to postpone plans until
other conditions occur. The promise, p, can be handed out and used just as any
other eventual reference. All messages eventually-sent to p are queued in the
promise. An object with access to r can wait until some condition occurs before
resolving p and allowing these pending messages to proceed, as a later example
will demonstrate.
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8.5 Broken Promise Contagion

Because eventual-sends are executed in a later turn, an exception raised by one
can no longer signal an exception and abort the plan of its “caller”. Instead,
the vat executing the turn for the eventual send catches any exception that
terminates that turn and breaks the promise by resolving the promise to a bro-
ken reference containing that exception. Any immediate-call or eventual-send
to a broken reference breaks the result with the broken reference’s exception.
Specifically, an immediate-call to a broken reference would throw the exception,
terminating control flow. An eventual-send to a broken reference would break
the eventual-send’s promise with the broken reference’s exception. As with the
original exception, this would not terminate control flow, but does affect plans
dependent on the resulting value.

E’s split between control-flow exceptions and data-flow exceptions was in-
spired by signaling and non-signaling NaNs in floating point. Like non-signaling
NaNs, broken promise contagion does not hinder pipelining. Following sections
discuss how additional sources of failure in distributed systems cause broken
references, and how E handles them while preserving defensive consistency.

9 Partial Failure

Not all exceptional conditions are caused by program behavior. Networks suffer
outages, partitioning one part of the network from another. Machines fail: some-
times in a transient fashion, rolling back to a previous stable state; sometimes
permanently, making the objects they host forever inaccessible. From a machine
not able to reach a remote object, it is generally impossible to tell which failure
is occurring or which messages were lost.

Distributed programs need to be able to react to these conditions so that sur-
viving components can continue to provide valuable and correct—though pos-
sibly degraded—service while other components are inaccessible. If these com-
ponents may change state while out of contact, they must recover distributed
consistency when they reconnect. There is no single best strategy for maintain-
ing consistency in the face of partitions and merges; the appropriate strategy
will depend on the semantics of the components. A general purpose framework
should provide simple mechanisms adequate to express a great variety of strate-
gies. Group membership and similar systems provide one form of such a general
framework, with strengths and weaknesses in comparison with E. Here, we ex-
plain E’s framework. We provide a brief comparison with mechanisms like group
membership in the “Related Work” section below.

E’s support for partial failure starts by extending the semantics of our refer-
ence states. Figure 5 shows the full state transition diagram among these states.

We have added the possibility of a vat-crossing reference—a remote promise
or a far reference—getting broken by a partition. A partition between a pair of
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Fig. 5. A resolved reference’s target is known. Near references are resolved and lo-
cal; they carry both immediate-calls and eventual-sends. Promises and vat-crossing
references are eventual; they carry only eventual-sends. Broken references carry nei-
ther. Promises may resolve to near, far or broken. Partition may break vat-crossing
references.

vats eventually breaks all references that cross between these vats, creating even-
tual common knowledge of the loss of connection. A partition simultaneously
breaks all references crossing in a given direction between two vats. The sender
of messages that were still in transit cannot know which were actually received
and which were lost. Later messages will only be delivered by a reference if all
earlier messages sent on that same reference were already delivered. This fail-
stop FIFO delivery order relieves the sender from needing to wait for earlier
messages to be acknowledged before sending later dependent messages.9

On our state-transition diagram (a Harel statechart), we see that “near” and
“broken” are terminal states. Even after a partition heals, all references broken
by that partition stay broken.

In our listener example, if a partition separates the account’s vat from the
spreadsheet’s vat, the statusHolder’s reference to the spreadsheet’s listener will
eventually be broken with a partition-exception. Of the statusChanged mes-
sages sent by the statusHolder, this reference will deliver them reliably in FIFO
order until it fails. Once it fails to deliver a message, it will never deliver any
further messages and will eventually become visibly broken.

An essential consequence of these semantics is that defensive consistency is
preserved across partition and reconnect. A defensively consistent program that
makes no provisions for partition remains defensively consistent. In the earlier
statusHolder example, statusChanged notifications sent to broken listener ref-
erences (e.g., broken because the connection to its subscriber vat was severed)
are harmlessly discarded.

9 The message delivery order E enforces is stronger than FIFO and weaker than Causal
[TMK+87], but FIFO is adequate for all points we make in this paper.
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9.1 Handling Failure

To explicitly manage failure of a reference, an object registers a handler to be
eventually notified when that reference becomes broken. For the statusHolder to
clean up broken listener references, it must register a handler on each one.

to addListener(newListener) {
myListeners.push(newListener)
newListener <- statusChanged(myStatus)
def handler() { remove(myListeners, newListener) }
newListener <- whenBroken(handler)

}
The whenBroken message is one of a handful of universally understood mes-
sages that all objects respond to by default.10 Of these, the following messages
are for interacting with a reference itself, as distinct from interacting only with
the object designated by a reference.

whenBroken(handler) When sent on a reference, this message registers its
argument, handler, to be notified when this reference breaks.

whenMoreResolved(handler) When sent on a reference, this message is nor-
mally used so that one can react when the reference is first resolved. We
explain this in the later “When-Catch” section below.

reactToLostClient(exception) When a vat-crossing reference breaks, it
sends this message to its target object, to notify it that some of its clients
may no longer be able to reach it.

Near references and local promises make no special case for these messages—
they merely deliver them to their targets. Objects by default respond to a
whenBroken message by ignoring it, because they are not broken. So, in our

single-vat scenario, when all these references are near, the additional code above
has no effect. A broken reference, on the other hand, responds by eventual-
sending a notification to the handler, as if by the following code:

to whenBroken(handler) { handler <- run() }
When a local promise gets broken, all its messages are forwarded to the broken
reference; when the whenBroken message arrives, the broken reference will
notify the handler.

A vat-crossing reference notifies these handlers if it becomes broken, whether
by partition or resolution. In order to be able to send these notifications during
partition, a vat-crossing reference registers the handler argument of a
whenBroken message at the tail end of the reference, within the sending vat.

If the sending vat is told that one of these references has resolved, it re-sends
equivalent whenBroken messages to this resolution. If the sending vat decides
that a partition has occurred (perhaps because the internal keep-alive timeout

10 In Java, the methods defined in java.lang.Object are similarly universal.
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has been exceeded), it breaks all outgoing references and notifies all registered
handlers.

For all the reasons previously explained, the handler behavior built into E’s
references only eventual-sends notifications to handlers. Until the above handler
reacts, the statusHolder will continue to harmlessly use the broken reference to
the spreadsheet’s listener. Contingency concerns can thus be handled separately
from normal operation.

But what of the spreadsheet? We have ensured that it will receive
statusChanged notifications in order, and that it will not miss any in the middle
of a sequence. But, during a partition, its display may become arbitrarily stale.
Technically, this introduces no new consistency hazards because the data may
be stale anyway due to notification latencies. Nonetheless, the spreadsheet may
wish to provide a visual indication that the displayed value may now be more
stale than usual, since it is now out of contact with the authoritative source.
To make this convenient, when a reference is broken by partition, it eventual-
sends a reactToLostClient message to its target, notifying it that at least
one of its clients may no longer be able to send messages to it. By default, ob-
jects ignore reactToLostClientmessages. The spreadsheet could override the
default behavior:

to reactToLostClient(exception) { ...update display... }
Thus, when a vat-crossing reference is severed by partition, notifications are
eventually-sent to handlers at both ends of the reference. This explains how
connectivity is safely severed by partition and how objects on either side can
react if they wish. Objects also need to regain connectivity following a partition.
For this purpose, we introduce offline capabilities.

9.2 Offline Capabilities

An offline capability in E has two forms: a “captp://...” URI string and an encap-
sulated SturdyRef object. Both contain the same information: the fingerprint
of the public key of the vat hosting its target object, a list of TCP/IP location
hints to seed the search for a vat that can authenticate against this fingerprint,
and a so-called swiss-number, a large unguessable random number which the
hosting vat associates with the target [Clo04a]. Like the popular myth of how
Swiss bank account numbers work, one demonstrates knowledge of this secret
to gain access to the object it designates. Like an object reference, if you do not
know an unguessable secret, you can only come to know it if someone who knows
it and can talk to you chooses to tell it to you. An offline capability is a form of
“password capability”—it contains the cryptographic information needed both
to authenticate the target and to authorize access to the target [Don76].

Both forms of offline capability are pass-by-copy and can be passed between
vats even when the vat of the target object is inaccessible. Offline capabilities do
not directly convey messages to their target. To establish or reestablish access
to the target, one makes a new reference from an offline capability. Doing so
initiates a new attempt to connect to the target vat and immediately returns a
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promise for the resulting inter-vat reference. If the connection attempt fails, this
promise is eventually broken.

Typically, most inter-vat connectivity is only by references. When these
break, applications on either end should not try to recover the detailed state
of all the plans in progress between these vats. Instead, they should typically
spawn a new fresh structure from the small number of offline capabilities from
which this complex structure was originally spawned. As part of this respawning
process, the two sides may need to explicitly reconcile in order to reestablish
distributed consistency.

In our listener example, the statusHolder should not hold offline capabilities
to listeners and should not try to reconnect to them. This would put the burden
on the wrong party. A better design would have a listener hold an offline capa-
bility to the statusHolder. The listener’s reactToLostClient method would
be enhanced to attempt to reconnect to the statusHolder and to resubscribe the
listener on the promise for the reconnected statusHolder.

But perhaps the spreadsheet application originally encountered this status-
Holder by navigating from an earlier object representing a collection of accounts,
creating and subscribing a spreadsheet cell for each. While the vats were out of
contact, not only may this statusHolder have changed, the collection may have
changed so that this statusHolder is no longer relevant. In this case, a better
design would be for the spreadsheet to maintain an offline capability only to the
collection as a whole. When reconciling, it should navigate afresh, in order to
find the statusHolders to which it should now subscribe.

The separation of references from offline capabilities encourages programming
patterns that separate reconciliation concerns from normal operations.

9.3 Persistence

For an object that is designated only by references, the hosting vat can tell when
it is no longer reachable and can garbage-collect it.11 Once one makes an offline
capability to a given object, its hosting vat can no longer determine when it is
unreachable. Instead, this vat must retain the association between this object
and its swiss-number until its obligation to honor this offline capability expires.

The operations for making an offline capability provide three options for end-
ing this obligation: It can expire at a chosen future date, giving the association a
time-to-live. It can expire when explicitly cancelled, making the association re-
vocable. And it can expire when the hosting vat crashes, making the association
transient. Here, we examine only this last option. An association which is not
transient is durable.

A vat can be either ephemeral or persistent. An ephemeral vat exists only
until it terminates or crashes; so for these, the last option above is irrelevant. A
persistent vat periodically checkpoints, saving its persistent state to non-volatile

11 E’s distributed garbage collection protocol does not currently collect unreachable
inter-vat references cycles. See [Bej96] for a GC algorithm able to collect such cycles
among mutually suspicious machines.
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storage. A vat checkpoints only between turns when its stack is empty. A crash
terminates a vat-incarnation, rolling it back to its last checkpoint. Reviving the
vat from checkpoint creates a new incarnation of the same vat. A persistent vat
lives through a sequence of incarnations. With the possibility of crash admitted
into E’s computational model, we can allow programs to cause crashes, so they
can preemptively terminate a vat or abort an incarnation.

The persistent state of a vat is determined by traversal from persistent roots.
This state includes the vat’s public/private key pair, so later incarnations can
authenticate. It also includes all unexpired durable swiss-number associations
and state reached by traversal from there. As this traversal proceeds, when it
reaches an offline capability, the offline capability itself is saved but is not tra-
versed to its target. When the traversal reaches a vat-crossing reference, a broken
reference is saved instead and the reference is again not traversed. Should this
vat be revived from this checkpoint, old vat-crossing references will be revived as
broken references. A crash partitions a vat from all others. Following a revival,
only offline capabilities in either direction enable it to become reconnected.

10 The When-Catch Expression

The whenMoreResolved message can be used to be register for notification
when a reference resolves. Typically this message is used indrectly through the
“when-catch” syntax. A when-catch expression takes a promise, a “when” block
to execute if the promise resolves to a value, and a “catch” block to execute if
the promise is broken. This is illustrated by the following example.

def asyncAnd(answers) {
var countDown := answers.size()
if (countDown == 0) { return true }
def [result, resolver] := Ref.promise()
for answer in answers {

when (answer) -> {
if (answer) {

countDown -= 1
if (countDown == 0) {

resolver.resolve(true)
}

} else {
resolver.resolve(false)

}
} catch exception {

resolver.smash(exception)
}

}
return result

}
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The asyncAnd takes a list of promises for booleans. It immediately returns a
reference representing the conjunction, which must eventually be true if all ele-
ments of the list become true, or false or broken if any of them become false or
broken. Using when-catch, asyncAnd can test these as they become available, so
it can report a result as soon as it has enough information.

If the list is empty, the conjunction is true right away. Otherwise, countDown
remembers how many true answers are needed before asyncAnd can conclude
that the conjunction is true. The “when-catch” expression is used to register a
handler on each reference in the list. The behavior of the handler is expressed
in two parts: the block after the “->” handles the normal case, and the catch-
clause handles the exceptional case. Once answer resolves, if it is near or far,
the normal-case code is run. If it is broken, the catch-clause is run. Here, if the
normal case runs, answer is expected to be a boolean. By using a “when-catch”,
the if is postponed until asyncAnd has gathered enough information to know
which way it should branch.

Once asyncAnd registers all these handlers, it immediately returns result, a
promise for the conjunction of these answers. If they all resolve to true, asyncAnd
reveals that the result is true, i.e., it eventually resolves the already-returned
promise to true. If it is notified that any resolve to false, asyncAnd reveals false
immediately. If any resolve to broken, asyncAnd reveals a reference broken by
the same exception. Asking a resolver to resolve an already-resolved promise
has no effect, so if one of the answers is false and another is broken, the above
asyncAnd code may reveal either false or broken, depending on which handler
happens to be notified first.

The following snippet illustrates using asyncAnd and when-catch to combine
independent validity checks in a toy application to resells goods from a supplier.

def allOk := asyncAnd([inventory <- isAvailable(partNo),
creditBureau <- verifyCredit(buyerData),
shipper <- canDeliver(...)])

when (allOk) -> {
if (allOk) {

def receipt := supplier <- buy(partNo, payment)
when (receipt) -> {

Promise-chaining postpones plans efficiently by data-flow; the “when-catch”
postpones plans until the data needed for control-flow is available.

11 From Objects to Actors and Back Again

Here we present a brief history of E’s concurrency-control architecture. In this
section, the term “we” indicates that one or both of this paper’s first two authors
participated in a project involving other people. All implied credit should be
understood as shared with these others.
Objects. The nature of computation provided within a single von Neumann
machine is quite different than the nature of computation provided by networks
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of such machines. Distributed programs must deal with both. To reduce cases, it
would seem attractive to create an abstraction layer that can make these seem
more similar. Distributed Shared Memory systems try to make the network
seem more like a von Neumann machine. Object-oriented programming started
by trying to make a single computer seem more like a network.

. . . Smalltalk is a recursion on the notion of computer itself. Instead of
dividing “computer stuff” into things each less strong than the whole—
like data structures, procedures, and functions which are the usual para-
phernalia of programming languages—each Smalltalk object is a recur-
sion on the entire possibilities of the computer. Thus its semantics are
a bit like having thousands and thousands of computers all hooked to-
gether by a very fast network.

—Alan Kay [Kay93]

Smalltalk imported only the aspects of networks that made it easier to pro-
gram a single machine—its purpose was not to achieve network transparency.
Problems that could be avoided within a single machine—like inherent asyn-
chrony, large latencies, and partial failures—were avoided. The sequential subset
of E has much in common with the early Smalltalk: Smalltalk’s object references
are like E’s near references and Smalltalk’s message passing is like E’s immediate-
call operator.
Actors. Inspired by the early Smalltalk, Hewitt created the Actors paradigm
[HBS73], whose goals include full network transparency within all the constraints
imposed by decentralization and mutual suspicion [Hew85]. Although the stated
goals require the handling of partial failure, the actual Actors model assumes
this issue away and instead guarantees that all sent messages are eventually
delivered. The asynchronous-only subset of E is an Actors language: Actors’
references are like E’s eventual references, and Actors’ message passing is much
like E’s eventual-send operator. Actors provide both data-flow postponement of
plans by futures (like E’s promises without pipelining or contagion) and control-
flow postponement by continuations (similar in effect to E’s when-catch).

The price of this uniformity is that all programs had to work in the face of
network problems. There was only one case to solve, but it was the hard case.
Vulcan. Inspired by Shapiro and Takeuchi [ST83], the Vulcan project
[KTMB87] merged aspects of Actors and concurrent logic/constraint program-
ming [Sha83, Sar93]. The pleasant properties of concurrent logic variables (much
like futures or promises) taught us to emphasize data-flow postponement and de-
emphasize control-flow postponement.

Vulcan was built on a concurrent logic base, and inherited from it the so-
called “merge problem” [SM87] absent from pure Actors languages: Clients can
only share access to a stateful object by explicit pre-arrangement, so the equiva-
lent of object references were not usefully first-class. To address this problem, we
created the “Channels” abstraction, which also provides useful ordering proper-
ties [TMK+87].
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Joule. The Joule language [TMHK95] is a capability-secure, massively-
concurrent, distributed language that is one of the primary precursors to E.
Joule merges insights from the Vulcan project with the remaining virtues of
Actors. Joule channels are similar to E’s promises generalized to provide mul-
ticasting. Joule tanks are the unit of separate failure, persistence, migration,
and resource management, and inspired E vats. E vats further define the unit
of sequentiality; E’s event-loop approach achieves much of Joule’s power with a
more familiar and easy to use computational model. Joule’s resource manage-
ment is based on abstractions from KeyKOS [Har85]. E vats do not yet address
this issue.
Promise pipelining in Udanax Gold. This was a pre-web hypertext sys-
tem with a rich interaction protocol between clients and servers. To deal with
network latencies, in the 1989 timeframe, we independently reinvented an asym-
metric form of promise pipelining as part of our protocol design [Mil92]. This
was the first attempt to adapt Joule channels to an object-based client-server
environment (it did not support peer-to-peer).
Original-E. The language now known as Original-E was the result of adding the
concepts from Joule to the sequential, capability-secure subset of Java. Original-
E was the first to successfully mix sequential immediate-call programming with
asynchronous eventual-send programming. Original-E cryptographically secured
the Joule-like network extension—something that had been planned for but not
actually realized in prior systems. Electric Communities created Original-E, and
used it to build Habitats—a graphical, decentralized, secure, social virtual reality
system.
From Original-E to E. In Original-E, the co-existence of sequential and asyn-
chronous programming was still rough. E brought the invention of the distinct
reference states and the transitions among them explained in this paper. With
these rules, E bridges the gap between the network-as-metaphor view of the
early Smalltalk and the network-transparency ambitions of Actors. In E, the
local case is strictly easier than the network case, so the guarantees provided by
near references are a strict superset of the guarantees provided by other refer-
ence states. When programming for known-local objects, a programmer can do
it the easy way. Otherwise, the programmer must address the inherent problems
of networks. Once the programmer has done so, the same code will painlessly
also handle the local case without requiring any further case analysis.

12 Related Work

Promises and Batched Futures at MIT. The promise pipelining technique
was first invented by Liskov and Shrira [LS88]. These ideas were then significantly
improved by Bogle [BL94]. Like the Udanax Gold system mentioned above,
these are asymmetric client-server systems. In other ways, the techniques used
in Bogle’s protocol resembles quite closely some of the techniques used in E’s
protocol.



224 M.S. Miller, E.D. Tribble, and J. Shapiro

Group Membership. There is an extensive body of work on group membership
systems [BJ87, Ami95] and (broadly speaking) similar systems such as Paxos
[Lam98]. These systems provide a different form of general-purpose framework
for dealing with partial failure: they support closer approximations of common
knowledge than does E, but at the price of weaker support for defensive con-
sistency and scalability. These frameworks better support the tightly-coupled
composition of separate plan-strands into a virtual single overall plan. E’s mech-
anisms better support the loosely-coupled composition of networks of indepen-
dent but cooperative plans.

For example, when a set of distributed components form an application that
provides a single logical service to all their collective clients, and when multiple
separated components may each change state while out of contact with the
others, we have a partition-aware application [OBDMS98, SM03], providing a
form of fault-tolerant replication. The clients of such an application see a close
approximation of a single stateful object that is highly available under partition.
Some mechanisms like group membership shine at supporting this model under
mutually reliant and even Byzantine conditions [CL02].

E itself provides nothing comparable. The patterns of fault-tolerant repli-
cation we have built to date are all forms of primary-copy replication, with a
single stationary authoritative host. E supports these patterns quite well, and
they compose well with simple E objects that are unaware they are interacting
with a replica. An area of future research is to see how well partition-aware ap-
plications can be programmed in E and how well they can compose with others.
Croquet and TeaTime. The Croquet project has many of the same goals
as the Habitats project referred to above: to create a graphical, decentralized,
secure, user-extensible, social virtual reality system spread across mutually sus-
picious machines. Regarding E, the salient differences are that Croquet is built
on Smalltalk extended onto the network by TeaTime, which is based on Namos
[Ree78] and Paxos [Lam98], in order to replicate state among multiple authori-
tative hosts. Unlike Habitats, Croquet is user-extensible, but is not yet secure.
It will be interesting to see how they alter Paxos to work between mutually
suspicious machines.

12.1 Work Influenced by E’s Concurrency Control

The Web-Calculus. The Web-Calculus [Clo04b] brings to web URLs the fol-
lowing simultaneous properties:

– The cryptographic capability properties of E’s offline capabilities—both au-
thenticating the target and authorizing access to it.

– Promise pipelining of eventually-POSTed requests with results.
– The properties recommended by the REST model of web programming

[Fie00]. REST attributes the success of the web largely to certain loose-
coupling properties of “http://...” URLs, which are well beyond the scope
of this paper. See [Fie00, Clo04b] for more.
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As a language-neutral protocol compatible and composable with existing web
standards, the Web-Calculus is well-positioned to achieve widespread adoption.
We expect to build a bridge between E’s references and Web-Calculus URLs.
Oz-E. Like Vulcan, the Oz language [VH04] descends from both Actors and con-
current logic/constraint programming. Unlike these parents, Oz supports shared-
state concurrency, though Oz programming practice discourages its use. Oz-E
[SV05a] is a capability-based successor to Oz designed to support both local and
distributed defensive consistency. For the reasons explained in the “Defensive
Correctness” section above, Oz-E suppresses Oz’s shared-state concurrency.
Twisted Python. This is a library and a set of conventions for distributed
programming in Python, based on E’s model of communicating event-loops,
promise pipelining, and cryptographic capability security [Lef].

13 Discussion and Conclusions

Electric Communities open-sourced E in 1998. Since then, a lively open source
community has continued development of E at http://www.erights.org/. Seven
companies and two universities have used E—to teach secure and distributed
programming, to rapidly prototype distributed architectures, and to build several
distributed systems.

Despite these successful trials, we do not yet consider E ready for production
use—the current E implementation is a slow interpreter written in Java. Two
compiler-based implementations are in progress: Kevin Reid is building an E on
Common Lisp [Rei05], and Dean Tribble is building an E on Squeak (an open-
source Smalltalk). Several of E’s libraries, currently implemented in Java, are
being rewritten in E to help port E onto other language platforms. Separately,
Fred Spiessens continues to make progress on formalizing the reasoning about
authority on which E’s security is based [SV05b].

Throughout, our engineering premise is that lambda abstraction and object
programming, by their impressive plan coordination successes in the small, have
the seeds for coordinating plans in the large. As Alan Kay has urged [Kay98], our
emphasis is less on the objects and more on the interstitial fabric which connects
them: the dynamic reference graph carrying the messages by which their plans
interact.

Encapsulation separates objects so their plans can avoid disrupting each
other’s assumptions. Objects compose plans by message passing while respect-
ing each other’s separation. However, when client objects request service from
provider objects, their continued proper functioning is often vulnerable to their
provider’s misbehavior. When providers are also vulnerable to their clients, cor-
ruption is potentially contagious over the reachable graph in both directions,
severely limiting the scale of systems we can compose.

Reduced vulnerability helps contain corruption. In this paper, we draw at-
tention to a specific composable standard of robustness: when a provider is de-
fensively consistent, none of its clients can corrupt it or cause it to give incorrect
service to any of its well-behaved clients, thus protecting its clients from each
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other. When a system is composed of defensively consistent abstractions, to a
good approximation, corruption is contagious only upstream. (Further vulnera-
bility reduction beyond this standard is, of course, valuable and often needed.)

Under shared-state concurrency—conventional multi-threading—we have
shown by example that defensive consistency is unreasonably difficult. We have
explained how an alternate concurrency-control discipline, communicating event-
loops, supports creating defensively consistent objects in the face of concurrency
and distribution. Our enhanced reference graph consists of references in different
states, where their message delivery abilities depends on their state. Only even-
tual references convey messages between event-loops, and deliver messages only
in separately scheduled turns, providing temporal separation of plans. Promises
pipeline messages towards their likely destinations, compensating for latency.
Broken references safely abstract partition, and offline capabilities abstract the
ability to reconnect.

We have used small examples in this paper to illustrate principles with which
several projects have built large robust distributed systems.
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