
44 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

POLARIS:
VIRUS-SAFE COMPUTING

for Windows XP

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 83

iruses—those nasty
pieces of software that

sometimes run when a user
launches an email attach-

ment, edits a file with
macros, or visits a Web page

that uses scripts—are clearly a
problem. Unlike some mali-

cious programs that depend on
programming mistakes, viruses

don’t exploit inadvertent security
holes; they use the system the way

it was designed to be used. But
how can that be?

All widely used operating systems,
not just Windows, base their security

on the identity of the logged-in user. This means
every program we run can do anything we can do,
whether we want it done or not. This is the flaw in
the basic design of our systems that viruses exploit,
doing things we are allowed to do that we don’t want
done.

The problem is the excess authority that every
program gets from the operating system. There’s no

reason Solitaire, for example, needs to be able to
search our hard drives for secrets and send them to
our competitors. There’s no reason Excel needs to be
able to put a Trojan horse in our startup folders. Yet
in the current generation of operating systems that’s
simply the way things work. This view is so wide-
spread that the first of Microsoft’s 10 Immutable
Laws of Security [5] says, “If a bad guy can persuade
you to run his program on your computer, it’s not
your computer anymore.”

“Sandboxing,” or producing a set of rules for each
program, as in Java 2 Security [4], is a common
means of dealing with this problem. But the rules in
sandboxing are static. Adding authorities to a run-
ning program (such as to open a file) is often diffi-
cult in these systems.

The alternative is to control access to individual
resources, many such systems nagging the user with
“May I?” dialogue boxes (such as the one in some
Java Web Start applications [3], as in Figure 1a).
Although we can hide this advisory for the duration
of the run, the fact that it is needed at all indicates
there is no distinction between requests made by the
user and those made by the software. Hence, hiding

POLARIS:
VIRUS-SAFE COMPUTING

for Windows XP

V

By Marc Stiegler, Alan H. Karp, Ka-Ping Yee,
Tyler Close, and Mark S. Miller

It limits the damage a virus can do by using the
operating system’s own security mechanisms to enforce the

Principle of Least Authority on individual applications.

84 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

the advisory may allow the software to take actions
counter to our wishes.

This assumption—that a system with fine-grain
control is unusable—translates into the belief that the
security policy must group authorities into relatively
large chunks [2]. Such systems appear to be easy to
use; issue a command and it runs. Experience has
shown, however, that they become difficult to use
when the security policy is configured to prevent
viruses from abusing excess authorities. Virus scan-
ners must be updated and run on a regular basis. Fire-
walls must be configured. Worse, blocking the attacks
reduces functionality. Security advisories tell us
“Don’t launch email attachments”; “Disable macros
in documents”; and “Turn off scripting on Web
pages.” The result is feature starvation.

The final blow is that systems that grant large
chunks of authority present us with hopeless dilem-
mas. We’re all familiar with dialogue boxes (see Figure
1b) that ask users to choose between not getting their
work done and losing control of their machines.
Worse, these dialogue boxes don’t give sufficient
information to make an intelligent decision. Why is
the macro needed? What damage might it do? There
is no way to tell.

Vista, Microsoft’s follow-on to Windows XP
(scheduled for general release in early 2007) takes an
intermediate approach called User Account Protec-
tion [6]. A set of programming guidelines helps appli-
cation developers write programs that can be run by
unprivileged users. In addition, certain powerful
functions can be invoked only by using mechanisms
safe from malicious code running with user permis-
sions. Combined with virtualizing parts of the reg-
istry and file system, User Account Protection lets
users get their work done without needing adminis-
trator privileges. While this approach adds important

protections for system resources, it does little to pro-
tect user data. Identity thieves aren’t interested in sys-
tem files, and ransomware [11] encrypts user data
while demanding payment for the decryption key.

Polaris is a package for Windows XP being devel-
oping by a skunk works group called the Virus Safe
Computing Initiative at Hewlett-Packard Laborato-
ries in Palo Alto, CA, that allows users to configure
most applications so they launch with only the rights
they need to do the job the user wants done. This
step—enforcing the Principle of Least Authority—
provides so much protection from viruses that there is
no need to pop up security dialogue boxes or ask users
to accept digital certificates. Moreover, there is less
risk in launching email attachments, using macros in
documents, or allowing scripting while browsing the
Web. Polaris demonstrates we can build systems that
are more secure, more functional, and easier to use
than those already in common use.

WE FOUND FROM OUR EARLIER WORK ON A SECURE

distributed desktop environment called CapDesk [9]
that combining designation with authorization lets
users manage fine-grain authorities while making
almost all security decisions disappear into the back-
ground. For example, double-clicking on the icon for
a spreadsheet to launch Excel is an act of designation.
In Polaris, the act of designation is also treated as an
act of authorization, adding the authority to edit the
designated spreadsheet to an instance of Excel initially
configured without authority to edit files. In Polaris
jargon, an application configured this way is said to
be polarized.

The process running polarized Excel needs access
to more than just the file being edited. It also needs
access to, for example, its own executable. Most pro-
grams also have a large number of auxiliary files (such

Figure 1. Standard dialogue boxes ask users to make security decisions without giving them a basis for understanding the implications of their
decisions: (a) “May I?” request from Java Web Start; (b) dilemma posed by Excel.

(a) (b)

as shared libraries or fonts) and often create temporary
files in some folder. Since access to these files is needed
each time the application runs, regardless of which file
it is editing, Polaris gives each application an installa-
tion endowment consisting of the ability to use the
files—another concept carried over from CapDesk.
This coupling of an installation endowment and com-
bining designation with authorization makes the secu-
rity decisions part of the user’s normal activity.

Unlike static sandboxing or fine-grain access con-
trol in Java Web Start, Polaris is able to add to the
authorities available to a process without requiring
any extra effort by the user. The user simply clicks the
File Open icon. Polaris detects the dialogue box and
substitutes one from the PowerBox, a process with
access to all of the user’s files. After the user selects a

file, Polaris makes that file accessible to the running
program. No further security decisions are required.
Polaris infers what authorities the user wants to grant
by detecting the user’s acts of designation in the
PowerBox. The PowerBox is the third concept Polaris
adopted from CapDesk, along with installation
endowment and using acts of designation as acts of
authorization.

Users of Polaris need not worry about getting their
work done when encountering problems. Polarizing
applications doesn’t prevent them from running the
standard version. They can either launch the applica-
tion directly or right-click on an icon for the file and
select Open instead of OpenSafe. Launched this way,
the application runs in the user’s account with all of
the user’s permissions. However, if a virus runs in an
unpolarized application, it can abuse any of the user’s
authorities.

POLARIZING APPLICATIONS

Polaris developers call an instance of a polarized
application a pet. Figure 2a shows the dialogue box
set up to configure a pet to run Excel. The user
selects a petname for the pet [8] to appear in the title
bar of each window running it, giving the user a con-
venient verification that the program being run is
safe from viruses. If the user specifies file extensions,
the pet will launch when the user double-clicks on
the icon for a file with one of these extensions.

It may make sense to have more than one pet for a
given application. For example, a user might have one
browser pet for a particular intranet and another for
the Internet. Since each pet runs in a separate account,
the user can have the intranet pet remember pass-
words without worrying that visiting some external
Web site with the Internet pet will reveal them.

Users are better off if they are aware of the security
environment around them, but the cues should not be
obtrusive [12]. As shown in Figure 2b, Polaris modi-
fies the title bar of the window running the applica-
tion. If a pet is running in the window, the petname
appears, <<InternetExplorer>>, as shown on the
left. If the application was not launched under Polaris,
the petname is blank, and there is no <<>>, as shown
on the right. The difference in style, which is due to a

ENFORCING the Principle of Least Authority gives
so much protection from viruses there is no need to pop up security

dialogue boxes or ask users to accept digital certificates.

(b)

(a)

Figure 2. It’s easy to configure an application in Polaris and know
which windows are running programs protected by Polaris:
(a) polarizing an application; (b) visual indication of protection state.

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 85

Windows artifact, is another visual cue.
These same visual cues appear in all subwindows

and are important when more than one application is
open. For example, a macro virus running in Excel
could open a file dialogue box that overlaps a window
running Word. Without a visual cue, the user might
select a file without knowing which application
would be granted permission to edit it.

HOW IT WORKS

Polaris doesn’t change the operating system or the
applications; it changes only the way applications
are launched. Instead of starting an application in
the logged-in user’s account, a polarized application
is launched in a restricted user account with few per-
missions. This procedure uses the operating system’s

own security mechanisms to limit what the software,
including any viruses it contains, can do. A program
launched this way lacks permission to read or mod-
ify the user’s data or for a keystroke logger to see
what is being typed.

When the user double-clicks on the icon for a file,
Polaris launches the application in steps (see Figure
3). First, it copies the file the user designated to a
folder accessible to the restricted account. Next, it sets
up a synchronizer to keep the copy and the original
file consistent. Finally, it launches the application
using a feature of the Windows API that lets the user
start a process in the restricted account.

If a virus runs in the restricted account, the only
thing it can damage with the privileges of that
account is the file being edited. It lacks the ability to
modify the user’s startup folder, nor can it read other
files looking for secrets. If the browser is polarized,
malicious scripts can’t use the browser’s privileges to
plant spyware and adware on the user’s system outside
the area available to the restricted account. Further-
more, malware is able to change only the restricted
account’s part of the Windows Registry, since access
to registry entries is controlled through the same
mechanism used for files. Any such changes are easily
undone by polarizing the application again. A num-
ber of users at Hewlett-Packard in the pilot study we
have been running since 2005 who have visited Web
pages containing viruses can attest to the protection
provided by Polaris. Any damage these users have

86 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

Figure 3. Starting an Excel pet.

VIRUSES AND WORMS

The terms virus and worm are used interchangeably to describe somewhat different types of malware. We use a loosely
followed distinction that worms propagate on their own, while viruses are spread only by people. The prototypical worm was
released in 1988 by Robert T. Morris, a student at Cornell University at the time [1]. An early virus called Love Letter was
released in 2000 (www.cert.org/advisories/CA-2000-04.html), inducing people to open its attachment, a Visual Basic Script.
Once launched, the script makes several modifications to the machine and sends copies of itself to all entries in all Outlook
address books in the system. The definitions we use here are officially accepted by the U.S. Government. The Jargon File, an
online technology dictionary (www.eps.mcgill.ca/jargon/jargon.html), also supports our definitions:

worm n. [from “tapeworm” in John Brunner’s novel The Shockwave Rider via Xerox PARC]. A program that propagates itself
over a network, reproducing itself as it goes. Compare virus. The term has negative connotations, as it is assumed that only
crackers write worms. Perhaps the best-known example was Robert T. Morris’s Great Worm of 1988, a “benign” one that got
out of control and hogged hundreds of Suns and VAX machines across the U.S.

virus n. [from the obvious analogy with biological viruses, via science fiction]. A cracker program that searches out other
programs and “infects” them by embedding a copy of itself in them, making them Trojan horses. When these programs are
executed, the embedded virus is also executed, thus propagating the “infection.” This is normally invisible to the user. Unlike
a worm, a virus cannot infect other computers without assistance.

The question of what is a worm and what is a virus is hardly settled, though. For example, the title of the CERT advisory
referenced in the context of defining “virus” is “Love Letter Worm.”

Reference
1. Spafford, E. The Internet worm program: An analysis. ACM SigComm Computer Communications Review 19, 1 (Jan. 1989), 17–57.

reported is limited to the pet account.
There are two reasons not to simply change the

Windows Access Control List (ACL) and edit in
place. First, many applications (such as Microsoft
Word) create temporary files in the same directory as
the documents they open. These applications would
work properly only if they were granted write author-
ity to the parent directory. Doing so would greatly
increase the damage a virus could do. In addition, the
user probably lacks permission to change the ACL of
files residing on network shares.

Another reason for not editing in place has to do
with the difference between permission and authority
(see the sidebar “Viruses and Worms”). As imple-
mented, the restricted user account has the authority
to make changes in the original file because the syn-
chronizer uses its permissions to copy updates to the
original. The restricted account has no permission to
change the original file. The advantage of not allow-
ing the restricted account to change the original file is
that the authority to make changes is revoked when
the synchronizer is stopped, should, say, the machine
crash. Using this mechanism means Polaris leaves no
dangling permissions that must be cleaned up later.

SINCE JUNE 2005, 15 PEOPLE IN HEWLETT-PACKARD

Labs, 10 at other Hewlett-Packard locations, and
some not associated with Hewlett-Packard have been
using the alpha release of Polaris. For the most part
they are unaware of its presence. In fact, one executive
used Polaris with no problems for several days before
we told him what we’d done to his machine. Several
of these early users have been saved from harm when
viruses ran in polarized applications. Users who con-
sistently surf with a polarized browser report finding
little or no spyware or adware on their machines.

The beta version of Polaris was released in June
2006 and is still available. We added four new users at
Hewlett-Packard Labs with the rollout of the beta
release and plan to add 10 to 20 more once we resolve
any issues raised by this group. We also plan to expand
our outside testing beyond the current pilot studies at
the School of Public Policy at George Mason Univer-
sity, Fairfax, VA, and at the U.S. Navy (responsible for
the Department of Defense Horizontal Fusion Pro-
ject), Monterey, CA. We will use reports from these
early testers to decide when and how quickly we add
additional users. Hewlett-Packard had no plans to
turn Polaris into a product at press time.

The beta release included numerous improvements
over earlier versions. Most important, it closed the
GUI hole. The issue is that Windows allows any
application to send GUI events to any window on the
desktop. These messages can be used by the receiving

application to run commands with the privileges of
the receiving process instead of the privileges of the
process sending the message (see the sidebar “Privi-
lege, Permission, and Authority”). These Windows
messages can even be used to exploit flaws in system
services to gain full control over the machine [7]. We
have found a feature of the Windows API that lets
Polaris block such attacks [1]. Unfortunately, using it
exposes some bugs in Windows that need
workarounds. For example, users of polarized applica-
tions can cut and paste bitmaps but not text when
using this feature. We have implemented
workarounds for this and for other problems we’ve
encountered.

Polaris uses acts of designation to determine autho-
rization, avoiding the usual trade-offs between usabil-
ity and security. By presenting the user with fewer
dialogue boxes, Polaris makes Windows somewhat
easier to use. Beyond this improvement, we would
like to make using a machine protected by Polaris
identical to using a standard Windows desktop. We’re
close but can do better. For example, the beta version

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 87

PRIVILEGE, PERMISSION, AND AUTHORITY

The security community often cites the Principle of Least
Privilege [2], though exactly what constitutes a privilege isn’t
clear, even to these experts. One attempt at clarification [1]
introduced the distinction between permission and authority,
defining permission as the set of rules written down in, say,
an access control list, and authority as the set of conse-
quences a process can cause to happen. Authority combines
the set of permissions with the behavior of parties having
these permissions.

Consider a Web server. The process running it has permis-
sion to read the files of the Web site; there is a specific entry
in the ACL for each file. Someone visiting the Web site has no
entry in the ACL but still can read the contents of the file
because the server presents the information. Hence, the Web
surfer has authority to read the files, even though no explicit
permission grants such access.

Security analysis that considers only permission is incom-
plete. Security analysis that includes authority is necessarily
constrained by the ability to understand the behavior of pro-
grams. Fortunately, it is often possible to get a usable bound
on the authority available to any process [1].

References
1. Miller, M. and Shapiro, J. Paradigm regained: Abstraction mechanisms

for access control. In Proceedings of the Eighth Asian Computing Science
Conference (ASIAN 2003) (Mumbai, India, Dec. 10–13). Tata Institute
of Fundamental Research, Mumbai India, 2003, 224–242; erights.org/
talks/thesis/index.html.

2. Saltzer, H. and Schroeder, M. The protection of information in com-
puter systems. Proceedings of the IEEE 63, 9 (Sept. 1975), 1278–1308.

does not handle linked files (such as spreadsheets con-
taining references to other spreadsheets) very well.
When there is a difference, we need to identify only
an act of designation they can use to change the
authorization. We have solutions to the linked files
and other problems that did not make it into the beta
version.

We’ve also been unable to solve some problems.
For example, Direct 3D is incompatible with the
security machinery inside Polaris. Hence, many
games don’t work if polarized. PGP won’t run polar-
ized. And some operations of the Cygwin command
shell modify access control lists in a manner that is
incompatible with Polaris.

We also haven’t been able to block some attacks.
For example, the beta version does nothing about
limiting network access, meaning that a virus could
send the contents of the document being edited to a
competitor. We believe we have identified a possible
solution to this problem by using a custom firewall.

CONCLUSION

By bundling designation with authorization in order
to apply the Principle of Least Authority to individ-
ual programs, Polaris provides protection against
entire families of viruses with minimal impact on
usability and functionality. We’ve found that such
viruses running in polarized applications are able to
do much less harm than when they run in their non-
polarized counterparts. The parts of the system these
viruses attack (such as the Windows directory, the
user’s startup folder, and most of the Windows reg-
istry) are safe from them. Polaris lets users, as well as
application developers, take advantage of the effort
that went into developing powerful macro lan-
guages, use email to send programs to one another,
and enable the true power of Web scripting, all
without opening up our systems to attack.

References
1. Close, T., Stiegler, M., and Karp, A. Shatter-proofing Windows. In

Black Hat USA 2005 (Las Vegas, July 23, 2005);
www.blackhat.com/presentations/bh-usa-05/BH_US_05-Close/tyler
close_whitepaper_US05.pdf.

2. Kamp, P.-H. and Watson, R. Building systems to be shared securely.
ACM Queue 2, 5 (July/Aug. 2004), 42–51.

3. Kim, S. Java Web Start: Developing and Distributing Java Applications
for the Client Side. White Paper, IBM Corp. Armonk, NY, Sept. 1,
2001; www-106.ibm.com/developerworks/java/library/j-webstart/.

4. McGraw, G. and Felten, E. Securing Java: Getting Down to Business with
Mobile Code, 2nd Edition. John Wiley & Sons, Inc., New York, 1999.

5. Microsoft Corp. 10 Immutable Laws of Security. Redmond, WA;
www.microsoft.com/technet/archive/community/columns/security/ess
ays/10imlaws.mspx.

6. Microsoft Corp. Developer Best Practices and Guidelines for Applications
in a Least Privileged Environment: Understanding User Account Protec-
tion in Microsoft Windows Vista Beta 1, Windows Security Access Control.
Redmond, WA, Sept. 2005; msdn.microsoft.com/windowsvista/
default.aspx?pull=/library/en-us/dnlong/html/AccProtVista.asp.

7. Paget, C. Click next to continue. In Black Hat 2003 (Las Vegas, July
2003); blackhat.com/html/bh-media-archives/bh-archives-2003.
html#USA-2003.

8. Stiegler, M. An introduction to petname systems. In Advances in
Financial Cryptography, Volume 2, I. Grigg, Ed., 2005; www.financial-
cryptography.com/mt/archives/000499.html.

9. Stiegler, M. and Miller, M. A Capability-based Client: The
DarpaBrowser. Technical Report, Focused Research Topic 5. Combex,
Inc., Meadowbrook, PA, June 2002; www.combex.com/papers/darpa-
report/index.html.

10. U.S. General Accounting Office. Technology Assessment: Cybersecurity
for Critical Infrastructure Protection. GAO-04-321, Washington, D.C.,
May 2004, 27.

11. Websense Security Laboratories. Cyber Extortion Attack. May 2005;
www.websensesecuritylabs.com/alerts/alert.php?AlertID=194.

12. Yee, K.-P. User interaction design for secure systems. In Proceedings of
the Fourth International Conference on Information and Communications
Security (Singapore, Dec.). Springer-Verlag, 2002, 278–290.

Marc Stiegler (marc.d.stiegler@hp.com) is a visiting scholar in
the Virus Safe Computing Initiative of the Advanced Architecture
Program at Hewlett-Packard Laboratories, Palo Alto, CA.
Alan H. Karp (alan.karp@hp.com) is a principal scientist in the
Virus Safe Computing Initiative of the Advanced Architecture Program
at Hewlett-Packard Laboratories, Palo Alto, CA.
Ka-Ping Yee (ping@zesty.ca) is a Ph.D. student in the Computer
Science Division at the University of California, Berkeley.
Tyler Close (tyler.close@hp.com) is a research scientist in the
Mobile and Media Systems Laboratory at Hewlett-Packard
Laboratories, Palo Alto, CA.
Mark S. Miller (erights@hp.com) is a visiting scholar in the Virus
Safe Computing Initiative of the Advanced Architecture Program at
Hewlett-Packard Laboratories, Palo Alto, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0900 $5.00

c

88 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

POLARIS doesn’t change the operating system or the applications;
it changes only the way applications are launched.

