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Abstract. Access control  systems must be evaluated in part  on how well
they enable one to distribute the access rights needed for cooperation, while
simultaneously limiting the propagation of rights which would create vul-
nerabilities. Analysis to date implicitly assumes access is controlled only by
manipulating  a  system's  protection  state—the  arrangement  of  the  access
graph. Because of the limitations of this analysis, capability systems have
been “proven” unable to enforce some basic policies: revocation, confine-
ment, and the *-properties (explained in the text).

In actual practice,  programmers build  access abstractions—programs that
help control access, extending the kinds of access control that can be ex-
pressed. Working in Dennis and van Horn's original capability model, we
show how abstractions were used in actual capability systems to enforce the
above policies. These simple, often tractable programs limited the rights of
arbitrarily complex, untrusted programs. When analysis includes the possi-
bility  of  access  abstractions,  as  it  must,  the original  capability  model  is
shown to be stronger than is commonly supposed.

1. Introduction 

We live in a world of insecure computing. Viruses regularly roam our networks causing
damage. By exploiting a single bug in an ordinary server or application, an attacker may
compromise a whole system. Bugs tend to grow with code size, so vulnerability usually
increases over the life of a given software system. Lacking a readily available solution,
users have turned to the perpetual stopgaps of virus checkers and firewalls. These stop-
gaps cannot solve the problem—they provide the defender no fundamental advantage over
the attacker.

In large measure, these problems are failures of access control. All widely-deployed op-
erating systems today—including Windows, UNIX variants, Macintosh, and PalmOS—
routinely allow programs to execute with excessive and largely unnecessary authority. For
example,  when you run Solitaire,  it  needs only to  render  into  its  window, receive  UI
events, and perhaps save a game state to a file you specify. Under the Principle of Least
Authority (POLA—closely  related  to  the  Principle  of  Least  Privilege  [Saltzer75]),  it
would be limited to exactly these rights. Instead, today, it runs with all of your authority. It



can scan your email for interesting tidbits and sell them on eBay to the highest bidder; all
the while playing only within the rules of your system. Because applications are run with
such excessive authority, they serve as powerful platforms from which viruses and human
attackers penetrate systems and compromise data. The flaws exploited are not bugs in the
usual sense. Each operating system is functioning as specified, and each specification is a
valid  embodiment  of  its  access  control  paradigm.  The  flaws lie  in  the  access  control
paradigm.

By access control paradigm we mean an access control model plus a way of thinking—
a sense of what the model means, or could mean, to its practitioners, and of how its ele-
ments should be used.

For purposes of analysis, we pick a frame of reference—a boundary between a  base
system (e.g., a “kernel” or “TCB”) creating the rules of permissible action, and programs
running on that base, able to act only in permitted ways. In this paper, “program” refers
only to programs running on the base, whose access is controlled by its rules.

Whether to enable cooperation or to limit vulnerability, we care about authority rather
than permissions. Permissions determine what actions an individual program may perform
on objects it can directly access. Authority describes effects a program may cause on ob-
jects it can access, either directly by permission, or indirectly by permitted interactions
with other programs. To understand authority, we must reason about the interaction of pro-
gram behavior and the arrangement of permissions. While Dennis and van Horn's 1966 pa-
per, Programming Semantics for Multiprogrammed Computations [Dennis66] clearly sug-
gested both the need and a basis for a unified semantic view of permissions and program
behavior, we are unaware of any formal analysis pursuing this approach in the security,
programming language, or operating system literature.

Over the last 30 years, the formal security literature has reasoned about bounds on au-
thority exclusively from the evolution of state in protection graphs—the arrangement of
permissions. This implicitly assumes all programs are hostile. While conservatively safe,
this approach omits consideration of security enforcing programs. Like the access it con-
trols, security policy emerges from the interaction between the behavior of programs and
the underlying protection primitives. This omission has resulted in false negatives—mis-
taken infeasibility results—diverting attention from the possibility that an effective access
control model has existed for 37 years.

In this paper, we offer a new look at the original capability model proposed by Dennis
and van Horn [Dennis66]—here called object-capabilities. Our emphasis—which was also
their emphasis—is on expressing policy by using abstraction to extend the expressiveness
of object-capabilities. Using abstraction, object-capability practitioners have solved prob-
lems like revocation (withdrawing previously granted rights), overt confinement (coopera-
tively isolating an untrusted subsystem),1 and the *-properties (enabling one-way commu-
nication between clearance levels). We show the logic of these solutions, using only func-
tionality available in Dennis and van Horn's  1966 Supervisor,  hereafter  referred to  as

1 Semantic  models,  specifications,  and  correct  programs deal  only in  overt causation.
Since this paper examines only models, not implementations, we ignore covert and side
channels. In this paper, except where noted, the “overt” qualifier should be assumed. 



“DVH.” In the process, we show that many policies that have been “proven” impossible
are in fact straightforward.

The balance of this paper proceeds as follows. In “Terminology and Distinctions”, we
explain our distinction between permission and authority, adapted from Bishop and Sny-
der's distinction between de jure and de facto transfer. In “How Much Authority Does ‘cp’
Need?”, we use a pair of Unix shell examples to contrast two paradigms of access control.
In “The Object-Capability Paradigm”, we explain the relationship between the object-ca-
pability paradigm and the object paradigm. We introduce the object-capability language
E, which we use to show access control abstractions. In “Confinement”, we show how ob-
ject-capability systems confine programs rather than uncontrolled subjects. We show how
confinement enables a further pattern of abstraction, which we use to implement the *-
properties.

2.  Terminology and Distinctions

A direct access right to an object gives a 
subject permission to  invoke the  behav-
ior of that  object. Here, Alice has direct
access to  /etc/passwd, so she has per-
mission to invoke any of its operations.
She  accesses the  object,  invoking its
read() operation.

By  subject we mean the  finest-grain
unit of computation on a given system that may be given distinct direct access rights. De-
pending on the system, this could be anything from: all processes run by a given user ac-
count, all processes running a given program, an individual process, all instances of a giv-
en class, or an individual instance. To encourage anthropomorphism we use human names
for subjects. 

By object, we mean the finest-grain unit to which separate direct access rights may be
provided, such as a file, a memory page, or another subject,  depending on the system.
Without loss of generality, we model restricted access to an object, such as read-only ac-
cess to /etc/passwd, as simple access to another object whose behavior embodies the re-
striction, such as access to the read-only facet of  /etc/passwd which responds only to
queries.

Any discussion of access must carefully distinguish between permission and authority
(adapted  from Bishop  and  Snyder’s  distinction between  de  jure and  de  facto transfer
[Bishop79]). Alice can directly read /etc/passwd by calling read(…) when the system's
protection state says she has adequate permission. Bob (unshown), who does not have per-
mission, can indirectly read /etc/passwd so long as Alice sends him copies of the text.
When Alice and Bob arrange this relying only on the “legal” overt rules of the system, we
say Alice is providing Bob with an indirect access right to read /etc/passwd, that she is
acting as his proxy, and that Bob thereby has authority to read it. Bob’s authority derives
from the arrangement of permissions (Alice's read permission, Alice’s permission to talk
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Fig 1. Access diagrams depict protection state.



to Bob), and from the behavior of subjects and objects on permitted causal pathways (Alice'-
s proxying behavior). The thin black arrows in our access diagrams depict permissions.
We will explain the resulting authority relationships in the text.

The protection state of a system is the  arrangement of permissions at some instant in
time, i.e., the topology of the access graph. Whether Bob currently has permission to ac-
cess  /etc/passwd depends only on the current arrangements of permissions.  Whether
Bob eventually gains permission depends on this arrangement and on the state and behav-
ior of all subjects and objects that might cause Bob to be granted permission. We cannot
generally predict if Bob will gain this permission, but a conservative bound can give us a
reliable “no” or “maybe”.

From a given system’s update rules—rules governing permission to alter permissions—
one might be able to calculate a bound on possible future arrangements by reasoning only
from the current arrangement.2 This corresponds to Bishop and Snyder's potential de jure
analysis, and gives us an arrangement-only bound on permission. With more knowledge,
one can set tighter bounds. By taking the state and behavior of some subjects and objects
into account, we may calculate a tighter partially behavioral bound on permission.

 Bob’s eventual authority to /etc/passwd depends on the arrangement of permissions,
and on the state and behavior of all subjects and objects on permitted causal pathways be-
tween Bob and /etc/passwd. One can derive a bound on possible overt causality by rea-
soning only from the current arrangement of permissions. This corresponds to Bishop and
Snyder's potential de facto analysis, and gives us an arrangement-only bound on authori-
ty. Likewise, by taking some state and behavior into account, we may calculate a tighter
partially behavioral bound on authority. 

Systems have many levels of abstraction. At any moment our frame of reference is a
boundary between a base system that creates rules and the subjects hosted on that base, re-
stricted to play by those rules. By definition, a base system manipulates only permissions.
Subjects extend the expressiveness of a base system by building abstractions whose behav-
ior further limits the authority it provides to others. Taking this behavior into account, one
can calculate usefully tighter bounds on authority. As our description ascends levels of ab-
straction [Neumann80], the authority manipulated by the extensions of one level becomes
the permissions manipulated by the primitives of the next higher base. Permission is rela-
tive to a frame of reference. Authority is invariant.

It is unclear whether Saltzer and Schroeder’s Principle of Least Privilege is best inter-
preted as least permission or least authority. As we will see, there is an enormous differ-
ence between the two.

3. How Much Authority Does “cp” Need?

Consider how the following Unix shell command works:

2 The Harrison Ruzzo Ullman paper [Harrison76] is often misunderstood to say this cal-
culation is never decidable. HRU actually says it is possible (indeed, depressingly easy)
to design a set of update rules which are undecidable. At least three protection systems
have been shown to be decidably safe [Jones76, Shapiro00, Motwani00].



$ cp foo.txt bar.txt

Here, your shell passes to the cp program the two strings “foo.txt” and “bar.txt”.
By these strings, you mean particular files in your file system—your namespace of files. In
order for cp to open the files you name, it must use your namespace, and it must be able to
read and write any file you might name that you can read and write. Not only does cp op-
erate with all your authority, it must. Given this way of using names, cp's least authority
still includes all of your authority to the file system. So long as we normally install and run
applications in this manner, both security and reliability are hopeless.

By contrast, consider:

$ cat < foo.txt > bar.txt

This shell command brings about the same end effect. Although cat also runs with all
your authority, for this example at least, it does not need to. As with function calls in any
lexically scoped language (even FORTRAN), the names used to designate arguments are
evaluated in the caller’s namespace prior to the call (here, by opening files). The callee
gets direct access to the first-class anonymous objects passed in, and designates them with
parameter “names” bound in its own private name space (here, file descriptor numbers).
The file descriptors are granted only to this individual process, so only this process can
use these file descriptors to access these files. In this case, the two file descriptors passed
in are all the authority cat needs to perform this request. 

Today's widely deployed systems use both styles of access control. They grant permis-
sion to open a file on a per-account basis, creating the pools of authority on which viruses
grow. These same systems flexibly grant access to a file descriptor on a per-process basis.
Ironically, only their support of the first style is explained as their access control system.
Object-capability systems differ from current systems more by the elimination of the first
style than by the elaboration of the second.

If support for the first style were eliminated and cat ran with access only to the file de-
scriptors passed in, it could still do its job, and we could more easily reason about our vul-
nerabilities  to  its  malice or  bugs.  In  our  experience  of object-capability programming,
these radical reductions of authority and vulnerability mostly happen naturally.

4. The Object-Capability Paradigm

In the object model of computation [Goldberg76, Hewitt73], there is no distinction be-
tween subjects and objects. A non-primitive object, or instance, is a combination of code
and state, where state is a mutable collection of references to objects. The computational
system is the dynamic reference graph of objects. Objects—behaving according to their
code—interact  by sending messages on references.  Messages carry references as argu-
ments, thereby changing the connectivity of the reference graph.

The object-capability model uses the reference graph as the access graph, requiring that
objects can interact  only by sending messages on references. To get from objects to ob-
ject-capabilities we need merely prohibit certain primitive abilities which are not part of
the object model anyway, but which the object model by itself doesn't require us to prohib-



it—such as forged pointers, direct access to another's private state, and mutable static state
[Kahn88, Rees96, Miller00]. For example, C++, with its ability to cast integers into point-
ers, is still within the object model but not the object-capability model. Smalltalk and Java
fall outside the object-capability model because their mutable static variables enable ob-
jects to interact outside the reference graph.

Whereas the functionality of an object program depends only on the abilities provided
by its underlying system, the security of an object-capability program depends on underly-
ing inabilities as well. In a graph of mutually suspicious objects, one object's correctness
depends not only on what the rules of the game say it can do, but also on what the rules
say its potential adversaries cannot do.

4.1. The Object-Capability Model 

The following model is an idealization of various object languages and object-capability
operating systems. All its  access control abilities are present in DVH (Dennis and van
Horn's Supervisor) and most other object-capability systems.3 Object-capability systems
differ regarding concurrency control, storage management, equality, typing, and the primi-
tiveness of messages, so we avoid these issues in of our model. Our model does assume
reusable  references,  so  it  may  not  fit  object-capability  systems  based  on  concurrent
logic/constraint programming [Miller87, Kahn88, Roy02].  However, our examples may
easily be adapted to any object-capability system despite these differences. 

The static state of the reference graph is composed of the following elements.
 An object is either a  primitive or an  instance. Later, we explain three kinds of

primitives: data, devices, and a loader. Data is immutable.
 An instance is a combination of code and state. We say it is an instance of the be-

havior described by its code. For example, we say an operating system process is
an instance of its program.

 An instance's state is a mutable map from indexes to references.
 A reference provides access to an object, indivisibly combining designation of the

object, the permission to access it, and the means to access it. The permission ar-
rows on our access diagrams now depict references. 

 A capability is a reference to non-data.
 Code is some form of data (such as instructions) used to describe an instance's be-

havior to a loader, as explained below. Code also contains literal data.
 Code describes how a  receiving instance (or “self”) reacts to an incoming mes-

sage.
 While an instance is reacting, its addressable references are those in the incoming

message, in the receiving instance's state, and in the literal data of the receiving

3 Our object-capability model is essentially the untyped lambda calculus with applicative-
order local side effects and a restricted form of  eval—the model Actors and Scheme
are based on. This correspondence of objects, lambda calculus, and capabilities was no-
ticed  several  times  by  1973  [Goldberg76,  Hewitt73,  Morris73],  and  investigated
explicitly in [Tribble95, Rees96]. 



instance's code. The directly accessible objects are those designated by address-
able references.

 An index is some form of data used by code to indicate which addressable refer-
ence to use, or where in the receiving instance's state to store an addressable refer-
ence.  Depending on the system, an index into state may be an instance variable
name or offset, a virtual memory address, or a capability-list index (a c-list index,
like a file descriptor number). An index into a message may be an argument posi-
tion, argument keyword, or parameter name.

Message passing and object creation dynami-
cally change the graph's connectivity.

In the  initial conditions of Figure 2, Bob and
Carol are directly accessible to Alice. When Al-
ice sends Bob the message “foo(carol)”, she is
both accessing Bob and permitting Bob to access
Carol.

Alice can cause effects on the world outside
herself only by sending  messages to objects directly accessible to her (Bob), where she
may include, at distinct argument indexes, references to objects directly accessible to her
(Carol). We model a call-return pattern as two messages. For example, Alice gains infor-
mation from Bob by causing Bob (with a query) to cause her to be informed (with a re-
turn).

Bob is affected by the world outside himself only by the arrival of messages sent by
those with access to him. On arrival, the arguments of the message (Carol) become direct-
ly accessible to Bob. Within the limits set by these rules, and by what Bob may feasibly
know or compute, Bob reacts to an incoming message only according to his  code. All
computation happens only in reaction to messages.

We distinguish three kinds of primitive objects.
 Data objects, such as the number 3. Access to these are knowledge limited rather

than permission limited. If Alice can figure out which integer she wants, whether
3 or your private key, she can have it. Data provides only information, not access.
Because data is immutable, we need not distinguish between a reference to data

Fig 2: Introduction by Message Passing

Bob

Alice says: bob.foo(carol)

Alice foo

Carol

Model Term Capability OS Terms Object Language Terms
instance process, domain instance, closure
code non-kernel program

+ literal data
lambda expression,
class file, method table

state address space + c-list
(capability list)

environment, 
instance variable frame

index virtual memory address,
c-list index

lexical name, variable offset,
argument position

loader domain creator, exec eval, ClassLoader
Table 1: Object / Capability Corresponding Concepts



and the data itself. (In an OS context, we model user-mode compute instructions
as data operations.)

 Devices. For purposes of analysis we divide the world into a computational sys-
tem containing all  objects  of potential  interest,  and an  external  world.  On the
boundary are primitive devices, causally connected to the external world by unex-
plained means. A non-device object can only affect the external world by sending
a message to an accessible output device. A non-device object can only be affect-
ed by the external world by receiving a message from an input device that has ac-
cess to it.

 A  loader makes new instances. The creation request to a loader has two argu-
ments: code describing the behavior of the new instance, and an index => refer-
ence map providing all the instance's initial state. A loader must ensure (whether
by code verification or hardware protection) that the instance's behavior cannot
violate the rules of our model. A loader returns the only reference to the new in-
stance. (Below, use a loader to model nested lambda evaluation.)

By these rules, only connectivity begets connectivity—all access must derive from pre-
vious access. Two disjoint subgraphs cannot become connected as no one can introduce
them. Arrangement-based analysis of bounds on permission proceeds by graph reachabili-
ty arguments. Overt causation, carried only by messages, flows only along permitted path-
ways, so we may again use reachability arguments to reason about bounds on authority
and causality. The transparency of garbage collection relies on such arguments.

The object-capability model recognizes the security properties latent in the object mod-
el. All the restrictions above are consistent with good object programming practice even
when security is of no concern.

4.2. A Taste of E

To illustrate how the object-capability model is used to solve access control problems, we
use a subset of the E language as our notation. This subset directly embodies our object-
capability model. All the functionality it provides is present in DVH. Full  E extends the
capability paradigm beyond the model presented above. Using a cryptographic capability
protocol among mutually suspicious machines, E creates a distributed persistent reference
graph, supporting decentralized access control with somewhat weaker properties than are
possible within a single machine. These issues are beyond the scope of this paper. For the
rest of this paper, “E” refers to our subset of E.

In E, an instance is a single-parameter closure instantiated by lambda evaluation. The
single (implicit) parameter is for the incoming message. A message send applies an object-
as-closure to a message-as-argument. E combines Scheme-like semantics [Kelsey98] with
syntax for message sending, method dispatch, and soft type checking, explained below.
Here is a simple data abstraction.



def pointMaker {

    to make(x :int, y :int) :any {

        ^def point {

            to getX() :int { ^x }

            to getY() :int { ^y }

            to add(otherPt) :any {
                ^pointMaker.make(x.add(otherPt.getX()),
                                 y.add(otherPt.getY()))
}   }   }   }

The expressions defining pointMaker and point are object definitions—both a lamb-
da expression and a variable definition. An object definition evaluates to a closure whose
behavior is described by its body, and it defines a variable (shown in bold italics) to hold
this value.  The body consists  of  to clauses  defining methods,  and an optional  match  
clause as we will see later. Because an object is always applied to a message, the message
parameter is implicit, as is the dispatch on the message name to select a method. The pre-
fix “^” acts like the return keyword of many languages. The pointMaker has a single
method, make, that defines and returns a new point. 

Method definitions (shown in bold) and variable definitions (shown in italics) can have
an optional soft type declaration [Cartwright91], shown as a “:” followed by a guard ex-
pression. A guard determines which values may pass. The  any guard used above allows
any value to pass as is.

The nested definition of point uses x and y freely. These are its instance variables, and
together form its state. The state maps from indexes “x” and “y” to the associated values
from point’s creation context.

Using the loader explained above, we can transform the above code to

def pointMaker {

    to make(x :int, y :int) :any {

        ^def point := loader.load(“def point {…}”,
                                  [“x” => x, “y” => y])
}   }

Rather than a source string, a realistic loader would accept some form of separately
compiled code. 

The expression [“x” => x, “y” => y] builds a map of index => reference associa-
tions. All “linking” happens only by virtue of these associations—only connectivity begets
connectivity.

Applying this transformation recursively would unnest all object definitions. Nested ob-
ject  definitions better  explain instantiation in object  languages.  The  loader better  ex-
plains process or domain creation in operating systems. In E, we almost always use object
definitions, but we use the loader below to achieve confinement.



4.3. Revocation: Redell’s 1974 Caretaker Pattern

When  Alice  says  bob.foo(carol),  she
gives Bob unconditional, full, and perpetual
access to Carol. Given the purpose of Alice's
message to Bob, such access may dangerous-
ly exceed least authority. In order to practice
POLA, Alice might need to somehow restrict
the  rights  she  grants  to  Bob.  For  example,
she might want to ensure she can revoke access at a later time. But in a capability system,
capabilities themselves are the only representation of permission, and they provide only
unconditional, full, perpetual access to the objects they designate. 

What is Alice to do? She can use (a slight simplification of) Redell’s Caretaker pattern
for revoking access [Redell74], shown here using additional elements of E we explain be-
low.

def caretakerMaker {

    to make(var target) :any {

        def caretaker {

            match [verb :String, args :any[]] {
                E.call(target, verb, args)
        }   }

        def revoker {

            to revoke() :void {
                target := null
        }   }
        ^[caretaker, revoker]
}   }

Instead of saying “bob.foo(carol)”, Alice can instead say:

def [carol2, carol2Rvkr] := caretakerMaker.make(carol)
bob.foo(carol2)

The Caretaker carol2 transparently forwards messages it receives to target’s current
value. The Revoker  carol2Rvkr changes what that current value is. Alice can later re-
voke the effect of her grant to Bob by saying “carol2Rvkr.revoke()”. 

Variables in E are non-assignable by default. The var keyword means target can be
assigned. (var is the opposite of Java's final.) Within the scope of target’s definition,
make defines two objects, caretaker and revoker, and returns them to its caller in a two
element list. Alice receives this pair, defines carol2 to be the new Caretaker, and defines
carol2Rvkr to be the corresponding Revoker. Both objects use  target freely, so they
both share access to the same assignable  target variable (which is therefore a separate
object).

Capability systems modeled as unforge-
able  references  present  the  other  ex-
treme,  where  delegation  is  trivial,  and
revocation is infeasible. 

—Chander, Dean, Mitchell
[Chander01]



What happens when Bob invokes carol2, thinking he’s invoking the kind of thing Car-
ol  is?  An object  definition contains methods and an optional  match clause defining a
matcher. If an incoming message (x.add(3)) doesn’t match any of the methods, it is given
to the matcher. The verb parameter is bound to the message name (“add”) and the args
to the argument list ([3]). This allows messages to be received generically without prior
knowledge of their API, much like Smalltalk’s doesNotUnderstand: or Java’s Proxy.
Messages  are  sent  generically  using  “E.call(…)”,  much  like  Smalltalk’s  perform:,
Java’s “reflection”, or Scheme's apply.

This Caretaker4 provides a temporal restriction of authority. Similar patterns provide
other restrictions, such as filtering facets that let only certain messages through. Even in
systems not designed to support access abstraction, many simple patterns happen natural-
ly. Under Unix, Alice might provide a filtering facet as a process reading a socket Bob can
write. The facet process would access Carol using Alice’s permissions.

4.4. Analysis and Blind Spots

Given Redell’s existence proof in 1974, what are we to make of subsequent arguments that
revocation is infeasible in capability systems? Of those who made this impossibility claim,
as far as we are aware, none pointed to a flaw in Redell’s reasoning. The key is the differ-
ence between permission and authority analysis. ([Chander01] analyzes, in our terms, only
permission.) By such an analysis, Bob was never given permission to access Carol,  so
there was no access to Carol to be revoked! Bob was given permission to access carol2,
and he still has it. No permissions were revoked. 

A security officer investigating an incident needs to know who has access to a
compromised object.

—Karger and Herbert [Karger84]

In their paper, Karger and Herbert propose to give a security officer a list of all subjects
who are, in our terms, permitted to access Carol. This list will not include Bob’s access to
Carol, since this indirect access is represented only by the system’s protection state taken
together with the behavior of objects playing by the rules. Within their system, Alice, by
restricting the authority given to Bob as she should, has inadvertently thwarted the security
officer’s ability to get a meaningful answer to his query.

To render a permission-only analysis useless, a threat model need not include either
malice or accident; it need only include subjects following security best practices.

An arrangement-only bound on permission or authority would include the possibility of
the Caretaker giving Bob direct access to Carol—precisely what the Caretaker was con-
structed not to do. Only by reasoning about behaviors can Alice see that the Caretaker is a
“smart reference”. Just as  pointMaker extends our vocabulary of data types, raising the

4 The simple Caretaker shown here depends on Alice assuming that Carol will not provide
Carol's clients with direct access to herself. 
See www.erights.org/  elib  /capability/  deadman.html   for a more general treatment of revo-
cation in E.



abstraction level at which we express solutions, so does the Caretaker extend our vocabu-
lary for expressing access control. Alice (or her programmer) should use arrangement-only
analysis for reasoning about what potential adversaries may do. But Alice also interacts
with many objects, like the Caretaker,  because she has some confidence she understands
their actual behavior.

4.5. Access Abstraction

The object-capability model does not describe access control as a separate concern, to be
bolted on to computation organized by other means. Rather it is a model of modular com-
putation with no separate access control mechanisms. All its support for access control is
well enough motivated by the pursuit of abstraction and modularity.  Parnas’ principle of
information hiding [Parnas72] in effect says our abstractions should hand out information
only on a need to know basis. POLA simply adds that authority should be handed out only
on a need to do basis [Crockford97]. Modularity and security each require both of these
principles.

The object-capability paradigm, in the air by 1967 [Wilkes79, Fabry74], and well es-
tablished by 1973 [Redell74, Hewitt73, Morris73, Wulf74, Wulf81], adds the observation
that the abstraction mechanisms provided by the base model are not just for procedural,
data, and control abstractions, but also for access abstractions, such as Redell’s Caretaker.
(These are “communications abstractions” in [Tribble95])

Access abstraction is pervasive in actual capability practice, including filtering facets,
unprivileged transparent remote messaging systems [Donnelley76, Sansom86,  Doorn96,
Miller00], reference monitors [Rajunas89], transfer, escrow, and trade of exclusive rights
[Miller96, Miller00], and recent patterns like the Powerbox [Wagner02, Stiegler02]. Fur-
ther,  every non-security-oriented abstraction that usefully encapsulates its  internal state
provides, in effect, restricted authority to affect that internal state, as mediated by the logic
of the abstraction.

5. Confinement

… a program can create a controlled environment within which another, possi-
bly untrustworthy program, can be run safely… call the first program a customer
and the second a service. … [the service]  may leak, i.e. transmit … the input
data which the customer gives it. … We will call the problem of constraining a
service [from leaking data] the confinement problem.

—Lampson [Lampson73]

Once upon a time, in the days before wireless, you (a human customer) could buy a box
containing a calculator (the service) from a manufacturer you might not trust. Although
you might worry whether the calculations are correct, you can at least enter your financial
data confident that the calculator cannot leak your secrets back to its manufacturer. How
did  the box solve the confinement problem? By letting you see that  it  comes with no
strings attached. When the only causation to worry about would be carried by wires, the



visible absence of wires emerging from the box—the isolation of the subgraph—is ade-
quate evidence of confinement.

Here, we use this same technique to achieve confinement, substituting capabilities for
wires. The presentation here is a simplification of confinement in actual object-capability
systems [Hardy86, Shapiro99, Shapiro00, Wagner02, Yee03].

To solve confinement, assume that the manufacturer, Max, and customer, Cassie, have
mutual access to a (Factory, factoryMaker) pair created by the following code. Assume
that Cassie trusts that this pair of objects behaves according to this code.

{   interface Factory guards FactoryStamp {…}

    def factoryMaker {

        to make(code :String) :Factory {

            ^def factory implements FactoryStamp {

                to new(state) :any {
                    ^loader.load(code, state)
    }   }   }   }
    [Factory, factoryMaker]
}

The interface .. guards expression evaluates to a (trademark guard, stamp) pair rep-
resenting a new trademark, similar in purpose to an interface type.5 This syntax also de-
fines variables to hold these objects, here named Factory and FactoryStamp. Here we
use the  FactoryStamp to mark instances of  factory, and nothing else, as carrying this
trademark. We use the Factory guard in soft type declarations, like “:Factory” above,
to ensure that only objects carrying this trademark may pass. The block of code above
evaluates  to  a  (Factory,  factoryMaker)  pair.  Only the  factoryMaker of  a  pair  can
make objects, instances of factory, which will pass the Factory guard of that pair.

Max uses a factoryMaker to package his proprietary calculator program in a box he
sends it to Cassie.

def calculatorFactory := factoryMaker.make(“…code…”)
cassie.acceptProduct(calculatorFactory)

In section 5.2 Cassie uses a “:Factory” declaration on the parameter of her accept-
Product method to ensure that she receives only an instance of the above factory defini-
tion. Inspection of the factory code shows that a factory's state contains only data (here, a
String) and no capabilities—no access to the world outside itself. Cassie may therefore use
the factory to make as many live calculators as she wants, confident that each calculator

5 Such trademarking can be implemented in DVH and in our model of object-capability
computation  [Morris73,  Miller87,  Tribble95,  Rees96],  so  object-capability  systems
which provide trademarking primitively [Wulf81, Hardy85, Shapiro99, Yee03] are still
within our model.



has only that access beyond itself that  Cassie authorizes. They  cannot even talk to each
other unless Cassie allows them to.

With lambda evaluation, a new subject’s code and state both come from the same par-
ent. To solve the confinement problem, we combine code from Max with state from Cassie
to give birth to a new calculator, and we enable Cassie to verify that she is the only state-
providing parent.  This state is an example of Lampson’s “controlled environment”.  To
Cassie, the calculator is a controlled subject—one Cassie knows is born into an environ-
ment controlled by her. By contrast, should Max introduce Cassie to an already instantiat-
ed calculation service,  Cassie would not be able to tell whether it has prior connectivity.
(Extending our analogy, suppose  Max offers the calculation service from his web site.)
The calculation service would be an uncontrolled subject to her.

We wish to reiterate that by “confinement”, we refer to the overt subset of Lampson's
problem, where the customer accepts only code (“a program”) from the manufacturer and
instantiates it in a controlled environment. We do not propose to confine information or
authority given to uncontrolled subjects.

5.1. A Non-Discretionary Model

Capabilities are normally thought to be discretionary, and to be unable to enforce confine-
ment. Our confinement logic above relies on the non-discretionary nature of object-capa-
bilities. What does it mean for an access control system to be discretionary?

“Our discussion … rested on an unstated assumption: the principal that creates
a file or other object in a computer system has unquestioned authority to autho-
rize access to it by other principals. …We may characterize this control pattern
as discretionary.” [emphasis in the original]

—Saltzer and Schroeder [Saltzer75]

Object-capability systems have no principals. A human user, together with his shell and
“home directory” of references, participates, in effect, as just another subject. With the
substitution of  “subject”  for  “principal”,  we will  use this  classic  definition of  “discre-
tionary”. 

By this definition, object-capabilities are not discretionary. In our model, in DVH, and
in most actual capability system implementations, even if Alice creates Carol, Alice may
still only authorize Bob to access Carol if Alice has authority to access Bob. If capabilities
were discretionary, they would indeed be unable to enforce confinement. To illustrate the
power of confinement, we use it below to enforce the *-properties.

5.2. The *-Properties

Boebert made clear in [[Boebert84]]  that an unmodified or classic capability
system cannot enforce the *-property or solve the confinement problem. 

—Gong [Gong89]

Briefly,  the *-properties taken together allow subjects with lower (such as “secret”)
clearance to communicate to subjects with higher (such as “top secret”) clearance, but pro-



hibit communication in the reverse direction [Bell74]. KeySafe is a concrete and realistic
design for enforcing the *-properties on KeyKOS, a pure object-capability system [Raju-
nas89].  However,  claims  that  capabilities  cannot  enforce  the  *-properties  continue
[Gong89, Kain87, Wallach97, Saraswat03], citing [Boebert84] as their support. Recently,
referring to [Boebert84], Boebert writes:

The paper … remains, no more than an offhand remark. … The historical signifi-
cance of the paper is that it prompted the writing of [[Kain87]]

—Boebert [Boebert03]

Boebert here defers to Kain and Landwehr’s paper [Kain87]. Regarding object-capabil-
ity systems, Kain and Landwehr’s paper makes essentially the same impossibility claims,
which they support only by citing and summarizing Boebert. To lay this matter to rest, we
show how Cassie solves Boebert's challenge problem—how she provides a one way comm
channel to subjects she doesn't trust, say Q and Bond, who she considers to have secret
and top secret clearance respectively. Can Cassie prevent Boebert's attack, in which Q and
Bond use the rights Cassie provides to build a reverse channel?

Completing our earlier confinement example, Cassie accepts a calculator factory from
Max using this method.

to acceptProduct(calcFactory :Factory) :void {

    var diode :int := 0

    def diodeWriter {

        to write(val :int) :void { diode := val }
    }

    def diodeReader {

        to read() :int { ^diode }
    }

    def q := calcFactory.new([“writeUp” => diodeWriter, …])

    def bond := calcFactory.new([“readDown” => diodeReader, …])
    …
}

Cassie creates two calculators to serve as Q and Bond. She builds a data diode by defin-
ing a  diodeWriter, a  diodeReader, and an assignable  diode variable they share. She
gives Q and Bond access to each other only through the data diode. Applied to Cassie's ar-
rangement, Boebert's attack starts by observing that Q can send a capability as an argu-
ment in a message to the diodeWriter. An arrangement-only analysis of bounds on per-
missions or authority supports Boebert’s case—the data diode might introduce this argu-
ment to Bond. Only by examining the behavior of the data diode can we see the tighter
bounds it was built to enforce. It transmits data (here, integers) in only one direction and
capabilities in neither. (Q cannot even read what he just wrote!) Cassie relies on the be-
havior of the factory and data diode abstractions to enforce the *-properties and prevent
Boebert’s attack. (See [Miller03] for further detail.)



5.3. The Arena and Terms of Entry

Policies  like the *-properties are generally assumed to govern a computer  system as a
whole, to be enforced in collaboration with a human sys-admin or security officer. In a ca-
pability system, this is a matter of  initial conditions. If the owner of the system wishes
such a policy to govern the entire system, she can run such code when the system is first
generated, and when new users join. But what happens after the big bang? Let’s say Alice
meets Bob, who is an uncontrolled subject to her. Alice can still enforce “additive” poli-
cies on Bob, e.g., she can give him revocable access to Carol, and then revoke it. But she
cannot enforce a policy on Bob that requires removing prior  rights from Bob, for that
would violate Bob’s security!

Instead, as we see in the example above, acting as Lampson's “customer”, Aliceshe sets
up  an  arena—Lampson’s  “controlled  environment”—with initial  conditions  she  deter-
mines, governed by her rules, and over which she is the sys-admin. If her rules can be en-
forced on uncontrolled subjects, she can admit Bob onto her arena as a player. If her rules
require the players not to have some rights, she must set terms of entry. “Please leave your
cellphones at the door.” A prospective participant (Max) provides a player (calcFacto-
ry)  to  represent his interests within the arena,  where this player  can pass the security
check at the gate (here, :Factory). No rights were taken away from anyone; participation
was voluntary.

The arena technique corresponds to  meta-linguistic abstraction—an arena is a virtual
machine built within a virtual machine [Abelson86, Safra86]. The resulting system can be
described according to either level of abstraction—by the rules of the base level object-ca-
pability system or by the rules of the arena. The subjects built by the admitted factories are
also subjects within the arena. At the base level, we would say Q has permission to send
messages to  diodeWriter and authority to send integers to Bond. At the arena level of
description, we would say a data diode is a primitive part of the arena’s protection state,
and say Q has permission to send integers to Bond. Any base level uncontrolled subjects
admitted into the arena are devices of the arena—they have mysterious connections to the
arena's external world.

When the only inputs to a problem is data (here, code), any system capable of universal
computation can solve any solvable problem, so questions of absolute possibility become
useless for comparisons. Conventional language comparisons face the same dilemma, and
language designers have learned to ask instead an engineering question: Is this a good ma-
chine on which to build other machines? How well did we do on Boebert's challenge? The
code admitted was neither inspected nor transformed. Each arena level subject was also a
base level subject. The behavior interposed by Cassie between the subjects was very thin.
Mostly,  we reused the security properties  of the base level object-capability system to
build the security properties of our new arena level machine.

5.4. Mutually Suspicious Composition

When mutually suspicious interests build a diversity of abstractions to express a diversity
of co-existing policies, how do these extensions interact?



Let's say that Q builds a gizmo that might have bugs, so Q creates a Caretaker to give
the gizmo revocable access to his diodeWriter. Q's policy relies on the behavior of his
Caretaker but not necessarily on Cassie's diodeWriter. To Cassie, Q's gizmo and Care-
taker are part of Q's subgraph and indistinguishable from Q. Cassie's policy relies on the
behavior of her diodeWriter, but not on Q's Caretaker. They each do a partially behav-
ioral analysis over the same graph, each from their own subjective perspective. This sce-
nario shows how diverse expressions of policy often compose correctly even when none of
the interested parties are aware this is happening.

6. Conclusion

Just as we should not expect a base programming language to provide us all the data types
we need for computation, we should not expect a base access control system to provide us
all the elements we need to express our protection policies. Both issues deserve the same
kind of answer: We use the base to build abstractions, extending the vocabulary we use to
express our solutions. In evaluating a protection model, one must examine how well it sup-
ports the extension of its own expressiveness by abstraction and composition.

Security in computational systems emerges from the interaction between primitive pro-
tection mechanisms and the behavior of security enforcing programs. As we have shown
here, such programs are able to enforce restrictions on more general, untrusted programs
by building on and abstracting more primitive protection mechanisms. To our knowledge,
the object-capability model is the only protection model whose semantics can be readily
expressed in programming language terms: approximately, lambda calculus with local side
effects. This provides the necessary common semantic framework for reasoning about per-
mission and program behavior together.  Because security-enforcing programs are often
simple, the required program analysis should frequently prove tractable, provided they are
built on effective primitives.

By recognizing that  program behavior  can contribute towards access control,  a  lost
paradigm for protection—abstraction—is restored to us, and a semantic basis for extensi-
ble protection is established. Diverse interests can each build abstractions to express their
policies regarding new object types, new applications, new requirements, and each other,
and these policies can co-exist and interact. This extensibility is well outside the scope of
traditional access graph analyses.

Analyses based on the evolution of protection state are conservative approximations. A
successful verification demonstrating the enforcement of a policy using only the protection
graph (as in [Shapiro00]) is robust, in the sense that it does not rely on the cooperative be-
havior of programs. Verification failures are not robust – they may indicate a failure in the
protection model, but they can also result from what might be called “failures of conser-
vatism”—failures in which the policy is enforceable but the verification model has been
simplified in a way that prevents successful verification.

We have shown by example how object-capability practitioners set tight bounds on au-
thority by building abstractions and reasoning about their behavior, using conceptual tools
similar  to  that  used by object  programmers  to  reason about  any abstraction.  We have
shown, using only techniques easily implementable in Dennis and van Horn's 1966 Super-



visor, how actual object-capability systems have used abstraction to solve problems that
analyses using only protection state have “proven” impossible for capabilities.

The object-capability paradigm, with its pervasive, fine-grained, and extensible support
for the principle of least authority, enables mutually suspicious interests to cooperate more
intimately while being less vulnerable to each other. When more cooperation may be prac-
ticed with less vulnerability, we may find we have a more cooperative world.
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