
 

20 Dec 95 DRAFT 77

 

7.Boundary Foundations

 

Modules are built on low-level foundations that support boundaries for
creation and initiation of new programs in a running system, termina-
tion and resource management for existing programs, and access to
foreign services. These foundations provide the mechanism on which
the policies described in the Module Programming section are built. By
separating policy from mechanism, we enable multiple programmer-
level module systems to co-exist.

 

7.1. Domains

 

Domains

 

 are the foundational primitive for separately-executable pieces
of code. They represent the boundaries needed for modules, security,
and resource management. This section will describe them in detail.

 

7.2. Initiation

 

7.2.1. Necessity of Initiation

 

Initiation is the ability to start newly generated programs and connect
them into an already-running system. This is a fundamental require-
ment for open systems.

 

7.2.2. Layers of Initiators 

 

Programs can be initiated at many levels of abstraction. Machine code
programs, Joule abstract machine programs, and Joule parse trees are
all program representations that could be initiated. Initiators at each of
these levels can be built on the initiator for the next level down.

 

7.3. Export/Import Issues

 

This section will describe how an initiated process gets properly con-
nected to the rest of the universe of services.

 

7.4. Debugging Issues

 

Each separate domain is debugged independently. The typical model of
systems that provide general debugger access violate encapsulation in
a distributed system with untrusted clients. This section will describe

 



 

Boundary Foundations

78 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

how debuggers are implemented while maintaining modularity and
respecting trust boundaries.

 

7.5. Interoperability

 

Domains are the boundaries at which Joule communicates with foreign
services (services written in other languages). To Joule, a foreign service
looks like an independent Domain with which Joule engages in mes-
sage communication. The Joule semantics could actually manage entire
populations of external programs as if Joule were an operating system.


