

20 Dec 95 DRAFT 31

4.Syntax

This section presents an informal syntax for Joule. For a formal syntax,
see Appendix B. Syntactic abstraction, the set of techniques for extend-
ing the Joule syntax, is discussed but not specified in this document.

In the Joule syntax presented here, typography is significant:
whitespace delimits tokens and italics indicate comments. Boldface is
used to denote syntactic keywords in the text, but is not semantically
significant. Keywords occupy the same namespace as identifiers.

4.1. Lexical Conventions

This section describes the token types for standard Joule programs.
These include numerals, identifiers, keywords, labels, operators, spe-
cial characters, whitespace, comments, literals and quasi-literals. Joule
uses UNICODE for its character set.

4.1.1. Numerals

Numerals

 (the textual representations of the send ports to Joule num-
bers) are composed of the ASCII digits

0–9

. No other UNICODE
characters are considered “numerals” in Joule.

4.1.2. Identifiers

Identifiers

 are sequences of UNICODE letters, digits, and operator char-
acters that begin with a letter, or sequences of any UNICODE
characters (including whitespace) enclosed by either straight (' ') or
standard (‘ ’) single quotes, with backslash as an escape character. The
quotes and escapes are

not

 considered part of the identifier. Case is sig-
nificant. Some examples of legal identifiers are:

4.1.3. Keywords

Keywords

 are identifiers that are treated specially. They are shown in the
text as

bold

, but this representation is not syntactically significant. The
syntax extension system to be described in future versions of the docu-

x list a> ‘an identifier’
question? D

→

38a

δαιµον

+ ‘letter \’a\’ ’

The Joule syntax presented in
this document replaces a
former one in which line inden-
tation was significant.

When the UNICODE commit-
tee defines character categories
such as numeric characters,
identifier characters, and opera-
tor characters, Joule will adopt
those distinctions. Until then,
Joule will use the simplest pos-
sible distinctions.

Syntax

32 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

ment will cover this in detail. Keywords provide syntactic structure.
Examples of keywords are:

(The send keyword •, which does not begin with a letter, is an excep-
tion to the rule that keywords must be identifiers.)

4.1.4. Operators

Operators

 are sequences of UNICODE letters, digits, and operator char-
acters that begin with an operator character. Some examples of legal
operators are:

4.1.5. Labels

Labels

 are identifiers followed by colons (“:”), or the double-colon by
itself. Labels, along with operators, are used as operations (message
names).

4.1.6. Characters

Operator characters include:

+ - * / < = > ! @ $ % ̂ & | \ / ? ~ _

→

⇒

Some characters are treated specially. These include:

. ; , : # ' " ̀ { } [] ()

“.” and “;” are handled specially to support a syntax that doesn’t
require character attributes: identifiers that end in “.” are considered
keywords (without the “.”), and “;” begins a comment that consumes
the rest of the line. “:” is used generally as the indicator of an operation
label. “#” introduces an arbitrary quasi-literal; “##” introduces an arbi-
trary literal.

4.1.7. Whitespace and Comments

Whitespace includes: space, tab, linefeed, CR, and form-feed.

Comments are arbitrary characters written with italic character
attributes. Joule treats comments just like whitespace. Comments can-
not be embedded within a single identifier.

4.1.8. Literals and Quasi-literals

Two special token types are

literals

 and

quasi-literals

. Though directly
supported by the syntax, these both represent expression values and
are described in the next section.

Common literal types like numbers, strings, and characters are defined.
Joule also supports general literals: arbitrary user-defined objects
embedded in the source code by multi-media editors. The support for
this is beyond the scope of this document.

Server

If

 •

Syntax+

Case

Define

∆

 ‘Right Here’

+

→

 != <-than-3

sort: :: delta+3: ‘there now\':’

When the UNICODE operator
character declarations are final-
ized, the set of Joule operator
characters will be extended to
include additional characters
like ± and ÷.

Expressions

20 Dec 95 DRAFT 33

4.2. Expressions

At the bottom, Joule syntax is imperative, and therefore statement-
based. However, because expressions are used so frequently for math
and comparison operations, a rich expression syntax is supported
which transforms cleanly into the relational syntax underneath.

In brief, complex expressions become separate statements with the dis-
tributor of an implicit results channel. The site of the original
expression is replaced by a reference to the acceptor of the results chan-
nel. This means that nested expressions still compute completely
concurrently with their embedding statement. This transformation is
described in detail in

Section 5.4

.

Below is a simplified BNF for expressions. Multiple lines in the produc-
tion definition are disjunctive; thus, a

simpleExpr

 is an

Identifier

, or a

Literal

, or a

Quasiliteral

, etc.

Simple expressions designate particular values. These are:

4.2.1. Identifiers

Identifiers name communication ports on which messages can be sent
to other Joule receivers, and which can be included in messages. These
are just single tokens.

4.2.2. Literals

A literal expression statically designates a specific value that will be
made available at run-time. It is represented as a single token to the
compiler. Examples include numbers, shared immutable strings, and
user-defined, embedded receivers (shared icons, shared print servers,
etc.):

4.2.3. Quasi-literals

A quasi-literal expression designates a value which will be copied at
run-time. These copies may incorporate literals, and run-time values.
Examples include quasi-quoted lists as in Lisp, strings computed from
formats as in C

printf

 statements, and user-defined, embedded
receivers.

Production

Production Definition

Example

simpleExpr Identifier

Literal

Quasiliteral

tuple

'(' nestExpr ')'

bank>

17.5

oper: arg

opExpr simpleExpr

simpleExpr

Operator

 opExpr

17

3 + 17

nestExpr simpleExpr

simpleExpr opExpr

12

bank deposit: chk

tuple

Operator

 opExpr*

Label

 opExpr*

+ b

get: i - 1 result>

1234.5 ##"this is a test"

In BNF representations, foo*
means zero or more instances of
foo and foo? means zero or one
instances of foo. Braces are used
for grouping.

The apparent shift/reduce
ambiguities in the grammar
must be resolved by reducing
(as YACC would).

Syntax

34 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

For example,

#"This is a $t1"

 where

t1

 is

"Test"

 would result in a copy of

"This is a Test"

.

4.2.4. Tuples

Tuples

 are used as messages in Joule. A tuple has a statically-available
name, called an

operation

, and any number of arguments (including
zero) which are other expressions. A tuple expression can be thought of
as a special and extremely common kind of quasi-literal.

Operations

 are
either operators or labels:

Tuple expressions include all operator expressions following them, so
they must be enclosed in parentheses (as a nested expression) in order
for another expression to follow them in a line of source code.

4.2.5. Operator Expressions (

opExpr

)

Computation in Joule proceeds by sending and processing messages.
The operator expression syntax supports conveniently sending mes-
sages commonly used in mathematical and relational expressions.

Operator expressions combine simple expressions into complex expres-
sions using operators. Precedence is right-to-left—the first operator is
applied to the first argument and the rest of the line, which will be the
second operator applied to the second argument and the rest of the line.

4.2.6. Nested Expressions (

nestExpr

)

Nested expressions are enclosed by parentheses and can be used any-
where simple expressions are allowed. They support the explicit
grouping as shown in the example above, and allow expressions that
use label-based messages rather than just operator messages. For exam-
ple, this statement

sends the server

x

 the

max:

 operation with a single argument (the min-
imum of

y

 and

z

). Without the parentheses, the

max:

 request would be
sent with two arguments:

y

 and the tuple

min: z

.

4.3. Program Structure

Joule programs are composed of a sequence of forms. Each

form

 starts
with a keyword that identifies the syntactic type of that statement.
Forms with the “•” keyword are used for the most frequent operation,
message sending.

Syntactic extension tools allow users to associate new syntactic forms
with keywords. The syntactic extension system is not presented in this

+ 4 result>

req: arg1 arg2

The expression: is interpreted as:

3 + 4 + 5 – 12 3 + (4 + (5 – 12))

a <= b * c a <= (b * c)

• x max: (y min: z)

Identifier Scoping

20 Dec 95 DRAFT 35

version of the manual, but many of the forms presented in later sections
are actually syntactic abstractions built out of more primitive forms.

Forms typically have a

Keyword

 followed by any number of operator
expression arguments and ending with the corresponding

endKey-
word

. In the interior of the form, underneath the keyword statement, is
an optional block of more statements. Following the block are optional
extension lines that have the same structure but whose keyword identi-
fies them as part of the preceding statement. By convention, keywords
that start with uppercase begin a form, keywords that start with lower-
case begin extensions. A simple example is:

The entire example is a single form; the

If

 clause is the primary clause,
the

else

 clause is an extension. The

If

 clause has one argument follow-
ing, the operator expression

amount <= balance

. The nested form,

• account withdraw: amount

, uses the •-keyword statement form with a
single argument, the tuple

withdraw: amount

. The nested form under
the

else

 extension is similar: it is a one form block using the •-keyword
statement with a single argument, the tuple

report-bounce:

.

Note that tuple expressions include all operator expressions following
them. For another expression to follow a tuple in a line of source code,
the tuple must be enclosed in parentheses (as a nested expression).

4.4. Identifier Scoping

Any identifier may name a channel on which servers receive messages.
An identifier that does so is said to be

bound

 to that channel. Use of the
identifier designates use of the channel to which it is bound.

Certain syntactic forms create new channels and bind identifiers to
those channels. All bindings are

statically scoped

: the region of the source
code in which the binding will be visible is an observable property of
the source code. The same identifier may be bound to a different chan-
nel in an outer region that includes the inner region; the inner binding
shadows the outer one, and is the only binding visible to code in the
inner region.

Statements can create bindings in their

inner scope

—the statement itself
and everything nested within it—or in their

outer scope

—the block that
directly contains the statement, including all its sibling statements. The
syntactic form of the statement determines where the statement makes
bindings, and with what identifiers.

Server

 is a simple construct that
shows both kinds of binding:

If

 amount <= balance

• account withdraw: amount

else

• account report-bounce:

endIf

• factorial : 3 fact3>

Server factorial : num result>

If num <= 1

...

scope 1

scope 2

Syntax

36 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

Server

 makes a new channel for factorial requests named

factorial

 and
binds it in the outer scope (labeled

scope 1

). Each request sent to the
factorial channel invokes the nested code with

num

 and

result>

 bound in
the invoked code to the two arguments in the factorial request (roughly
the channel for the argument and the channel for the revealed result).
The two parameters are bound in the inner scope of the procedure
statement.

Like Scheme, Joule is a statically scoped language with block structure.
The block structure is represented by Keyword-endKeyword pairs; the
binding site for a use of an identifier can be statically determined from
the code. Unless hidden by the statement, bindings visible to a state-
ment are also visible to statements nested within it. The multiple
clauses of some statement forms may share the same inner scope, or
may each introduce nested scopes only visible to that clause.

Strict static scoping allows visibility constraints to contribute to the
modularity and security of the language. For instance, the Define con-
struct makes a new channel and binds identifiers to its ports. The
identifier supplied with Define is bound in the outer scope to the accep-
tor of the channel. This makes it visible both in the outer scope and the
inner scope, since bindings in one scope are generally visible to all
scopes within it. Define also binds a modification of the identifier (by
convention, the identifier followed by “>”) in the inner scope to the dis-
tributor of the channel. This distributor is visible only within the inner
scope. The utility of this can be seen in:

Any number of clients can share the bank without trusting each other
because their messages can only be received by the bank implementa-
tion (which they have to trust anyway). The visibility constraints of
Define guarantee that the binding of the distributor of the channel is not
visible outside the nested code within the Define-endDefine pair.

Define bank

implementation responding to messages on “bank>”

endDefine

bank clients that send messages to “bank”

