
 

20 Dec 95 DRAFT C1

 

C. Optional Arguments

 

This proposal for managing optional arguments and “rest” arguments
in messages is consistent with the existing syntax of the language, Ener-
getic Secrets (see Appendix D), and efficient implementation.

 

C.1. Overview

 

Optional arguments and rest arguments are both extremely useful facil-
ities. They are realizable (more or less conveniently) in languages such
as C++ and Scheme. This proposal supports them both directly. It starts
by allowing only one method to respond to a given selector or unsealer;
that one method can supply optional parameters to handle multiple
cases. This keeps a method name associated with a single semantics. 

 

C.2. Receiving Messages

 

Here is a template that illustrates all the argument-passing idioms:

The first operation, 

 

sel1:

 

, is the standard message passing pattern: sev-
eral argument names following the selector that will be matched
against the incoming arguments.

The second operation, 

 

sel2:

 

, illustrates handling of optional arguments.
It includes the keyword 

 

optional

 

, which signals that the pattern follow-
ing is for optional arguments only. Each optional argument name is
followed by “=” and an expression specifying a default value to be used
if that argument is not supplied in a message.

The third operation, 

 

sel3:

 

, illustrates handling of “rest” arguments, for
use when any number of supplied arguments are to be handled gener-
ically. The identifier 

 

num

 

 is bound to the number of arguments
remaining. The identifier 

 

fn

 

 is bound to a function which can reveal the
arguments to the message. Any of the “rest” arguments can then be
revealed by calling the argument function 

 

fn

 

 with the index of the argu-

 

Server

 

 serverName

 

op

 

 sel1: arg1 arg2 arg3

body...

 

op

 

 sel2: arg1 arg2 

 

optional

 

 arg3 = exp1, arg4 = exp2

body...

 

op

 

 sel3: arg1 

 

rest

 

 num fn

body...

 

endServer

 

 

 



 

C2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

ment to reveal and a distributor on which to reveal it. 

 

fn

 

 can only be
called once per index, with the calls in any order. (On further calls with
the same index, it must either return the same result or signal an
exception.)

 

C.3. Sending Messages

 

Sending messages with optional arguments is just like normal message
sending. Each optional argument can be either supplied or not; the
receiving server accommodates either case. Similarly, messages can be
sent to servers that will treat all the arguments generically. Special han-
dling is needed to forward messages generically when manipulating
the arguments. This requires the support of Energetic Secrets (see
Appendix D). 

Sealers for Energetic Secrets support direct protocol that can seal using
the same kind of argument count and argument function that the “rest”
arguments mechanism supplies. Programs can provide a function
directly that supplies the arguments dynamically to the message send.
Thus:

would supply 3 static arguments and any number of dynamic argu-
ments at call time (determined by the combination of 

 

num

 

 and 

 

fn

 

).

 

C.4. Other Changes

 

To support the implicit result argument convention in the presence of
optional and “rest” arguments, the implicit result argument will be the
first argument in a message. (Previously, it was assumed to be the last
argument.) Thus, the “plus” operation would be defined with:

This allows operations that are used in a functional style to also use
optional and rest arguments.

 

• receiver (msg:sealer seal*: num fn arg1 arg2)

 

op

 

 + result> addend

The current definition for “rest” 
arguments is in terms of a func-
tion and arguments. This may 
be changed to make use of a 
virtual collection type.


