B. BNF for Joule Syntax

This chapter presents, in Backus-Naur form, a grammar for the Joule
language forms and expression syntax. Lexical conventions will appear
in a later version of this Appendix.

B.1. BNF Conventions

In the BNFs in this appendix, the following conventions apply:

Italicized names indicate terminals. The terminals are not pre-
sented in this Appendix. See Section 4.1: Lexical Conventions for an
informal presentation.

Verticals (“1”) are used to separate alternative components that
may be used in the same place.

A question mark (“?”) following a component means exactly zero
or one instance of the component is allowed.

An asterisk (“*”) following a component means zero or more
instances of the component are allowed.

A plus sign (“+”) following a component means one or more
instances of the component are allowed.

Braces (“{ }”) are used to indicate grouped components, to which
one of the preceding allowance indicators applies as a unit. {fee
fie}* means zero or more instances of the series fee fie are allowed.

A component followed by some delimiter foo and an asterisk
means that zero or more instances of the component may be
present, separated by foo. For example, “ {ar},*” means that any
number of bar components may be present, separated by com-
mas.

A component followed by some delimiter foo and a plus sign
means that one or more instances of the component may be
present, separated by foo.

A production name for which multiple definitions are given
means that any one of the definitions may be used where that
token appears.

The indentation describes the indentation rules that were gener-
ally used throughout this manual, but has no semantic signifi-
cance.

20 Dec 95 DRAFT

B.2. Forms

Production Production Definition
block {form}*

form . sinplekxpr {ogksxpr},+ {then opkxpr}?
Define {param | param = opExpr},*
block
endDefine
ForAll param [0 param
block
endForAll
ForOne param [0 param param
block
endForOne
Handler opExpr
block
endHandler
HandlerTap opfxpr
block
endHandlerTap
Keeper opExpr
block
endKeeper
Signal opExpr
If opExpr
block
forlf opExpr
block}*
felself opfspr
block
forlf ockxpr
blaj(}* }*
else
block}?
endif
Switch opFsxpr
{case pattem
{or pettem}*
block}*
{otherwise param
block}?
endSwitch
Type param
{super Identifier}?
op {pattemjor+
block
tto Identifier {opkspr},+
blodk}*}*
endType
Server param {rethod}? {var}* gpes {facet}*
endServer
var var {param | param = opExpr}, *
block

Joule: Distributed Application Foundations 20 Dec 95 DRAFT

Production

Production Definition

0ps

{implements Ident/'ﬁer}?

op method}*

{otherwise param
block}

method

{pattem}or+
block
{change
block}*

change

to Identifier {cpExpr},+
| set {ldentifier = opExpr},+

facet

facet param ops

B.3. Expressions

opExpr sinpleFxpr | simplefxpr Operator cpkxpr
simpleFxpr Identifier | Literal | Quasiliteral | tple
| ' (" restBgr)"
nestExpr simpleExpr | simpleExpr opkxpr
tuple {Operator | Label } {ocFspr}*
param Identifier
pattemn tple | Quasiliteral

20 Dec 95 DRAFT

Joule: Distributed Application Foundations 20 Dec 95 DRAFT

