

20 Dec 95 DRAFT B1

B. BNF for Joule Syntax

This chapter presents, in Backus-Naur form, a grammar for the Joule
language forms and expression syntax. Lexical conventions will appear
in a later version of this Appendix.

B.1. BNF Conventions

In the BNFs in this appendix, the following conventions apply:

• Italicized names indicate terminals. The terminals are not pre-
sented in this Appendix. See

Section 4.1:

Lexical Conventions

 for an
informal presentation.

• Verticals (“|”) are used to separate alternative components that
may be used in the same place.

• A question mark (“?”) following a component means exactly zero
or one instance of the component is allowed.

• An asterisk (“*”) following a component means zero or more
instances of the component are allowed.

• A plus sign (“+”) following a component means one or more
instances of the component are allowed.

• Braces (“{ }”) are used to indicate grouped components, to which
one of the preceding allowance indicators applies as a unit.

{fee

fie}*

 means zero or more instances of the series

fee fie

 are allowed.

• A component followed by some delimiter

foo

 and an asterisk
means that zero or more instances of the component may be
present, separated by

foo

. For example, “

{bar},*

” means that any
number of

bar

 components may be present, separated by com-
mas.

• A component followed by some delimiter

foo

 and a plus sign
means that one or more instances of the component may be
present, separated by

foo

.

• A production name for which multiple definitions are given
means that any one of the definitions may be used where that
token appears.

• The indentation describes the indentation rules that were gener-
ally used throughout this manual, but has no semantic signifi-
cance.

B2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

B.2. Forms

Production

Production Definition

block {form}*

form • simpleExpr {opExpr},+ {

then

 opExpr}?

Define

 {param

| param = opExpr},*

block

endDefine

ForAll

param

⇒

 param

block

endForAll

ForOne

 param

⇒

 param param

block

endForOne

Handler

 opExpr

block

endHandler

HandlerTap

 opExpr

block

endHandlerTap

Keeper

 opExpr

block

endKeeper

Signal

 opExpr

If

 opExpr

block

{

orIf

 opExpr

block}*

{

elseIf

 opExpr

block

{

orIf

 opExpr

block}* }*

{

else

block}?

endIf

Switch

 opExpr

{

case

 pattern

{

or

 pattern}*

block}*

{

otherwise

 param

block}?

endSwitch

Type

 param

{

super

Identifier

}?

{

op

 {pattern}

or

+

block

{

to

Identifier

 {opExpr},+

block}*}*

endType

Server

 param {method}? {var}* ops {facet}*

endServer

var

var

 {param | param = opExpr},*

block

20 Dec 95 DRAFT B3

B.3. Expressions

ops

 {

implements

Identifier

}?

{

op

 method}*

{

otherwise

 param

block}

method

 {pattern}

or

+

block

{change

block}*

change

to

Identifier

 {opExpr},+

|

set

 {

Identifier

 = opExpr},+

facet

facet

 param ops

opExpr simpleExpr | simpleExpr

Operator

 opExpr

simpleExpr

Identifier

 |

Literal

 |

Quasiliteral

 | tuple

| '(' nestExpr ')'

nestExpr simpleExpr | simpleExpr opExpr

tuple {

Operator

 |

 Label

 } {opExpr}*

param

Identifier

pattern tuple |

Quasiliteral

Production

Production Definition

B4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

