9.Resource Management

This section first describes some underlying principles for resource
management abstractions in Joule. It then describes abstractions for
resource encapsulation and ownership, the foundations for resource
management. Finally, it describes market-based resource management
abstractions for making resource trade-offs in complex systems.

9.1. Resource Management Fundamentals

This section describes some underlying principles in the design of
resource management abstractions. The first two principles of hierar-
chical ownership and drawing authority are demonstrated in Chapter
6, the hierarchical accounts example.

9.1.1. Hierarchical Ownership

Hierarchical ownership makes Joule’s resource management abstrac-
tions recursively applicable. It permits reuse of mechanisms within an
entity without the entity losing control of its pieces. This section will
explain in detail why hierarchical resource ownership is important, and
gives real-world examples of its use (renters and landlords).

9.1.2. Drawing Authority

The naive way of sharing a resource among consumers is to divide it up
(to allocate it). This allocation assumes prior knowledge of how the
resource will be used. Allotting budgets to the consumers allows the
programmer the same control over the limits of consumption, without
requiring prior knowledge of resource utilization. This section will
describe budgeting drawing authority in more detail, describe how it
subsumes allocation, and give examples that motivate the shift to
drawing authority.

9.1.3. Quantity vs. Territory

Quantity and territory are two extremes for measuring or representing
access to resources. Quantity represents an amount of some fungible
resource (a resource whose units are all equivalent). Territory represents
a particular piece of some resource, analogous to real estate. Many com-
putational resources can be represented both ways (most memory
pages are fungible, for instance), and these representations are useful

20 Dec 95 DRAFT

85



86

Resource Management

for different things. This section will describe the distinction and give
examples.

9.2. Primitive Resources

The two fundamental computational resources are execution time and
memory. Management of other resources can be built in the language,
but these require support in the language implementation. This section
will describe the primitives for reifying and encapsulating these two
primitive resources, and give examples of using them.

9.2.1. Meters and Engines

Meters and Engines are two tools for encapsulating execution time.
Meters support ownership of quantities of compute time; Engines sup-
port ownership of “territories” of compute time. Engines are provided
to support real-time applications.

9.2.2. Space Banks

Space Banks encapsulate computer memory. This section will describe
the interface to them.

9.3. Agoric Abstractions

Agoric resource management is the use of markets and prices to man-
age resources. This section introduces a simple system design and
default strategies such that the emergent behavior of such a system is
understandable; then presents mechanisms for adding programmer-
defined strategies and policies for dynamically adapting to resource
availability.

9.3.1. Example System Design

This section will describe a particular system for market-based resource
management. It will include the definition of Workers, the virtual
machine that runs on money instead of CPU cycles.

9.3.2. Default Strategies

This section will describe the default strategies from which price sig-
nals emerge. Properties of default strategies are well described in [89].
These policies must:

e result in the emergence of typical system behaviors, such as fair-
ness among processes

e produce price information that reflects resource costs
* remain strategically robust against gaming by non-default strate-
gies

* be reasonably computationally efficient

9.3.3. Using Default Strategies

This section will describe the tools for using the default strategies,
including Workers (virtual machines that run on money) and Expense
Accounts (budgets for Workers to draw upon). These tools make it easy

Joule: Distributed Application Foundations 20 Dec 95 DRAFT



Improved Computational Model

to divide resources among many services, and call upon existing ser-
vices that require resources.

9.3.4. Building New Strategies

This section will go under the hood of the system to describe how to
build and use more sophisticated strategies for adapting resource
usage to the demands of the rest of the computation. These tools are for
processes that use price information, and include Agents (strategy ele-
ments) and the interfaces to standard resource Providers.

9.4. Improved Computational Model

Here we will present an abstract computational model that includes
resource management and a correct state of execution even in the
absence of sufficient resources.

20 Dec 95 DRAFT

87



88

Joule: Distributed Application Foundations

Resource Management

20 Dec 95 DRAFT



