
 

20 Dec 95 DRAFT 79

 

8.Security 

 

Many of Joule’s security foundations were drawn from or inspired by
KeyKOS, a capability-based operating system that provides NCSC
(National Computer Security Center) B3-level security. Security can be
thought of as the extreme of modularity: truly independent programs
can only interact with each other through explicit and controlled
boundaries.

Security, like modularity, is first supported by negative capabilities:
operations that are prevented. After insecure abilities have been
removed (such as the ability to write any file or write to any memory
location), and the system has been reduced to secure foundations, one
then builds abstractions that provide all the standard functionality of
insecure systems without exposing programs to risk. Finally, one estab-
lishes tools and methodologies with which programs can securely
engage in otherwise risky activities. This methodology for security is
really a methodology for managing and arranging trust relationships. 

This section first describes encapsulation, the enforcement of rules for
accessibility and visibility. Encapsulation makes each server inviolable
by other servers—the only thing a client can do to a server is send it
messages to which the server explicitly decides how to respond.

Encapsulation brings with it polymorphism and anonymity: servers
can only be distinguished by how they behave, so servers could be
written that pretend to be other servers (for instance, money). How
does one build trust relationships in such a system? We describe the
technique used in Joule with which servers can prove their identity to
each other, allowing the establishment and extension of trust relation-
ships between servers. This supports the creation of extended networks
of servers that cooperate and subcontract with each other.

With the establishment of these networks, the encapsulation and trust
issues arise all over again: does the original client trust a subcontractor?
There are many properties of a server that are composed from their sub-
contractors. The two we describe here are discretion (“Will the server
keep secrets?”) and durability (“Will the server still be in operation in
the future?”). Other such properties, like timeliness and robustness, are
not explored here.

 



 

Security

80 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

8.1. Encapsulation

 

Encapsulation is what people commonly think of when they think
about security. It is the enforcement of rules for accessibility and visibil-
ity. Languages like C and C++ provide weak modularity because any
program in the same address space can convert a number to a pointer
and violate the integrity of other parts of the code. Encapsulation
allows programs to run without interference or corruption from other
programs.

 

8.1.1. Capability Security

 

Capability security is the foundation for good encapsulation. This sec-
tion describes capability security. Certain powerful capabilities,
particularly those that violate encapsulation, such as the ability to read
and write any section of memory, are closely held by severely restricted
service providers.

 

8.1.2. Accessibility Relationships

 

The semantics of the accessibility relationships from the abstract execu-
tion model constrain the kinds of communication and access that can
happen among programs in a Joule system. The rules guarantee that all
communication is by message passing, and that all access to a receiver
is only through message passing. This guarantees the encapsulation of
Joule programs.

 

8.2. Certification

 

To build trust among unknown servers requires the ability to prove
their identities to each other. The identity might be of a type: servers
that charge money want to be paid with 

 

real

 

 money (also implemented
as a server), not a forged server that responds to the same messages as
money. The identity might also be of a particular server: when sending
to requests to a bank, a server wants it to be the bank at which it has its
account, not just any bank (even though all banks run the same code).

 

8.2.1. Verifiers

 

Joule provides the 

 

Verifier

 

 abstraction, a mechanism for certification
built using only encapsulation and message passing. Unlike KeyKOS
brands, 

 

Verifiers

 

 require no support in the computational model. 

 

Verifiers

 

 provide the services of a single-key encryption scheme using
encapsulation. Given a value to be sealed, a 

 

Verifier

 

 will create and
reveal a 

 

SealedEnvelope

 

 containing the supplied value that can only be
opened by the 

 

Verifier

 

 that sealed the envelope. That 

 

SealedEnvelope

 

 can
then be passed through insecure channels to some other server which
has access to the same 

 

Verifier

 

. That other server can open the 

 

SealedEn-

velope

 

 and use the contained server. 

 

Type

 

 Verifier

 

super

 

 Basic

 

seal the supplied contents in an envelope that can only be opened by the receiving 

Verifier, and reveal that sealed envelope.

 

op

 

 seal: contents enveloped>

For more about SealedEnve-
lopes, see Appendix D, 
Energetic Secrets.



 

Certification

20 Dec 95 DRAFT 81

 

Verifiers

 

 rely on encapsulation for their certification properties: unseal-
ing a message proves that the originating party had access to the same

 

Verifier

 

 as the receiver; with encapsulation, the receiver can know the
extent in which the 

 

Verifier

 

 is visible, and so can know what code gen-
erated the message.

Here is the replacement code for the hierarchical bank account example
(Chapter 6) that uses 

 

Verifiers

 

 to allow accounts access to each other's

 

Private

 

 channel without exposing the 

 

Private

 

 channels to outside code.
This line of code is added within the definition of the 

 

make-account

 

server; it creates a new 

 

Verifier

 

 named 

 

AccountPrivate

 

 within the scope of
the 

 

Account

 

 implementation:

The remainder of the code replaces the corresponding insecure imple-
mentations in the original Account implementation code:

The redefinition of the 

 

private:

 

 method now reveals a 

 

SealedEnvelope

 

containing the 

 

Private

 

 channel rather than revealing the actual 

 

Private

 

channel. The redefined 

 

private

 

 server (the internal server that an
account calls to access the 

 

Private

 

 channel of another account) also uses
that 

 

Verifier

 

: it asks the desired account for an envelope containing the
account’s Private channel, then unseals that envelope using the

 

AccountPrivate

 

 Verifier (the one shared by all accounts made by this

 

make-account

 

 server.) 

Both the account requesting a private channel and the account provid-
ing the private channel can be assured that the other is a real account,
and can be assured that the 

 

Private

 

 channel is secure (not exposed to
eavesdroppers or forgers). The type-authenticity (proving the other is a
real account) is guaranteed because both parties know the other party
has access to the 

 

AccountPrivate

 

 

 

Verifier

 

 (or the seal/unseal wouldn’t
have worked), both parties know that the accessibility rules of the lan-
guage guarantee that unless the make-account code reveals the

 

given an envelope sealed by the receiving Verifier, reveal the contents of the envelope.

 

op

 

 unseal: envelope content>

 

The type for envelopes used by Verifiers. SealedEnvelopes have no other behavior 

(beyond Basics) than the secure access that Verifiers use to get at the 

contents. Verifiers are built using more primitive Verifiers, so no user program 

can get at the contents of a SealedEnvelope; only the proper Verifier can.

 

Type

 

 SealedEnvelope

 

super

 

 Basic

 

Only Verifiers can get at the private channel of a SealedEnvelope (because they prove 

their identity using other Verifiers).

 

op

 

 private: private>

 

Define

 

 AccountPrivate (make-verifier ::)

 

Reveal an Envelope containing the private channel for the receiver.

 

op

 

 private: priv>

AccountPrivate seal: Private priv>

 

Reveal the private channel of another account by asking it for a sealed Private channel 

and unsealing it.

 

Server

 

 private :: account priv>

 

Define

 

 box account private:

AccountPrivate unseal: box priv>



 

Security

82 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

AccountPrivate

 

 Verifier, then only the body of that code can use it, and
finally both parties know that their implementation in 

 

make-account

 

doesn't reveal the 

 

AccountPrivate

 

 Verifier. The combination of these
means that only an account could have provided a 

 

SealedEnvelope

 

openable by 

 

AccountPrivate

 

, and only an account could open that enve-
lope. This means that messages sent on any account 

 

Private

 

 channel are
sent by an account server, and so are part of the proper implementation
of the 

 

Account

 

 abstraction.

An eavesdropper is a forwarder that wraps the 

 

SealedEnvelope

 

 in order
to get access to the contained 

 

Private

 

 channel when the envelope is
unsealed, or to engage in the protocol with which envelope is unsealed.
At no time is the 

 

Private

 

 channel of an account exposed outside of the
context of the account implementation, except in a 

 

SealedEnvelope

 

 that
can only be opened in the Account implementation context. The only
potential for exposure of the contents of the 

 

SealedEnvelope

 

 occurs dur-
ing the unsealing operation; during the sealing, the account has an
internal (i.e., no eavesdroppers) channel to the 

 

Private

 

 channel.

The unsealing operation uses the same kind of protocol in order to
unseal the envelope. All 

 

Verifiers

 

 and 

 

SealedEnvelopes

 

 within a trust
boundary share access to a single Verifier (the implementation of which
distributes efficiently) through which they can securely connect with
no eavesdroppers. As a result, during the unseal operation, the

 

AccountPrivate

 

 Verifier and the 

 

SealedEnvelope

 

 containing the desired
private channel make a secure connection through which the Envelope
reveals the contained 

 

Private

 

 channel to the 

 

Verifier

 

 which then reveals it
to the caller of 

 

unseal:

 

.

 

8.2.1.1. Unique Tokens

 

In the private protocol, an implementation could define messages to
reveal information unique to each instance in order to prove identity.
This code implements a simple unique token scheme in which the cli-
ents can only compare unique tokens, but cannot otherwise find out

 

anything

 

 about them:

 

Server

 

 make-token 

 

var

 

 myNext 0

 

var

 

 TokenPrivate (make-verifier :)

 

this should be a const declaration, but we don't have those yet.
Define the message used for procedure call (to make a unique token). This could also 

have been part of the first clause, but this is a better style for procedures with 

changing variables.

 

op

 

 : token>

token> -> token

 

Here is the behavior for an instance made by make-token.

 

Server

 

 token

 

var

 

 myID myNext

 

Get the number of the other guy and then compare it against the number of the 

receiver.

 

op

 

 = other equal?>

 

Define

 

 hisNum (TokenPrivate unseal: (other private:))

myNum = hisNum equal?>

 

 Reveal an Envelope containing the number unique to each instance.

 

op

 

 private: envelope>

TokenPrivate seal: myNum envelope>

 

set

 

 myNext myNext + 1



 

Discretion

20 Dec 95 DRAFT 83

 

Tokens each contain a number guaranteed to be unique with the simple
expedience of allocating them sequentially. The sequential ordering
won't reveal anything about the running of the program even if the
token creator is shared among untrusting programs because the num-
bers are never revealed except inside the actual implementation (just
like 

 

account

 

 above).

 

8.3. Discretion

 

As described in the introduction to security, once a system has certifica-
tion and encapsulation, it is possible to build large networks of servers
that subcontract with each other to provide services to their clients. The
naïve expansion to these large networks of servers leaves systems with
the same precarious lack of robustness characteristic of networks today.
Joule supports these large networks by allowing servers to establish
and verify transitive properties of these subcontracting relationships so
that a server can ensure its robustness. Many of these properties are
managed through the same general mechanisms, but they will first be
explored in the context of discretion. The techniques we describe here
are called assurance by construction, assurance by auditing, and assur-
ance by special execution. 

Discretion control is a generalization of the better-known confinement
problem. Successful 

 

confinement

 

 allows untrusted code to be run on pri-
vate data without the untrusted code being able to communicate any
secrets to the outside world. As the name implies, solutions to the con-
finement problem typically rely on running the untrusted code in a box
out of which it cannot communicate. Successful 

 

discretion

 

 

 

control

 

 allows
that same untrusted code to communicate with other services, but still
prevents secrets from being leaked. 

 

8.3.1. Assurance by Construction

 

Assurance by construction means having mutually trusted third-par-
ties build services for each other. The clients of such a construction
service can then know that no other server has access to their private
services, and so even if those services cheat, they still can’t communi-
cate secrets to the outside world. This section will describe the process
in more detail, including how Factories can provide assurance by
construction.

 

8.3.2. Assurance by Auditing

 

Auditors might be equipped with an abstraction-breaking tool which
can examine an existing server for capabilities to steal secrets. This tool
is very closely held. This is assurance by 

 

auditing.

 

 An auditor is able to
audit a service for connections that could lead to data leaks or for
dependencies on facilities that may be insufficiently permanent.

Modules pass an audit if they are functionally discreet. Factories pro-
duce modules that are structurally discreet—structural discretion can
only be supplied by construction because a module that would other-
wise be discreet might be shared with an indiscreet observer (a discreet
database, for instance).



 

Security

84 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

 

8.3.3. Assurance by Special Execution

 

Another technique involves an elaboration of the execution model with
which the owner of a secret can send messages involving the secret
inside special query messages. The ultimate effects of a query are solely
upon those things named in the message. This may sound like a very
limiting style of programming but such a query may, for instance, cre-
ate a database and reveal access to it while guaranteeing that no one
else has access. That the database was created with a query ensures that
secrets entrusted to it are safe from disclosure. This is assurance by 

 

spe-
cial execution

 

.

 

8.4. Durability

 

Durability is the property of a service that it can guarantee its own sur-
vival and continued function. It is 

 

durable

 

 if no untrusted authority has
the ability to destroy it or other services on which it depends. This can
extend into very physical realms of assuring that communication links
are independently redundant so that a single failure doesn’t partition
the network.

 

8.4.1. Implementation

 

Support for durability relies on the same foundations as discretion, but
uses the mechanisms somewhat differently. This section will describe
the differences.

 

8.4.2. Requirements

 

Where discretion is a correctness issue, durability brings performance
into the correctness domain. Thus, a program is not durable unless it
has access to enough resources to guarantee that it will run; durability
requires concurrency so that the process can run, and resource manage-
ment so that it can guarantee that it will.


