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Abstract
An increasing number of developers face the difficult task 
of  debugging  distributed  asynchronous  programs.  This 
trend has outpaced the development of adequate debugging 
tools and currently, the best option for many is an ad hoc 
patchwork of sequential tools and printf debugging.

This  paper  presents  Causeway,  a  postmortem distributed 
debugger  that  demonstrates  a  novel  approach  to 
understanding the behavior of a distributed program. Our 
message-oriented approach  borrows  an  effective  strategy 
from  sequential  debugging:  To  find  the  source  of 
unintended side-effects,  start  with the chain of expressed 
intentions.

We show how Causeway's  integrated views – describing 
both distributed and sequential  computation – help users 
navigate  causal  pathways  as  they  pursue  suspicions.  We 
highlight  Causeway's  innovative  features  which  include 
adaptive,  customizable event abstraction mechanisms and 
graphical  views that  follow message flow across process 
and machine boundaries. 

1. Introduction
The creative effort of designing and building software is a 
process of defining goals and implementing plans to satisfy 
the  goals  [1].  This  is  an  iterative  process  applied  at  all 
levels, from the broad scope of a large-scale architecture to 
the narrow focus of a specialized algorithm. The resulting 
program  expresses  the  authors'  intentions.  When  actual 
program behavior is not what was intended, debugging is 
required.

The  creative  effort  of  debugging  necessarily  includes 
mapping  observed  behavior  to  a  mental  model  of  the 
original  intentions to  discover  misconceptions  as  well  as 
semantic and logic errors. Watching program execution at 
an  appropriate  level  of  detail  and  without  interruption, 
supports  this  cognitive  effort.  Our  development  tools 
support  this  well  in  the  case  of  sequential  single-thread 
computation,  but  increasing numbers  of  developers write 
distributed asynchronous applications. 

One  conventional  approach  to  distributed  programming 
[27, 28, 29, 30] involves sequential processes sending and 
receiving  messages  on  channels.  In  this  case,  when 
searching for the cause of a bug symptom, it is natural to 
look backward within the suspect process first, since each 
process is a single conventional program. This may be done 
using  a  conventional  sequential  debugger,  a  distributed 

debugger,  or  some  combination.  Prior  distributed 
debuggers  emphasize  this  process-oriented  view  of 
distributed computation [31]. 

With the emergence of the web as an application platform, 
communicating  event  loops are  rapidly  becoming  the 
mainstream model  for  distributed  computation.  The  web 
browser runs multiple isolated JavaScript programs. Each 
runs as an event loop, processing user interface events as 
well  as asynchronous messages from a server [32].  With 
upcoming web standards, JavaScript event loops within the 
browser  will  be  able  to  send  asynchronous  messages  to 
each other  [4, 5] and to multiple servers [6, 7]. 

In  the  communicating  event  loops model,  there  are  no 
explicit  receive operations;  rather,  each received message 
notifies  a  callback,  spawning  a  sequential  call-return 
computation  which  executes  to  completion.  The  stack 
becomes  empty  before  the  next  incoming  message  is 
processed.  For  this  style  of  distributed  computation,  the 
conventional  debugger's  stack view only reaches back to 
the last receive – the one that spawned the current stack. 
Since  each  received  message  is  processed  to  completion 
separately, these computations are largely independent, so 
earlier state within the same process is likely less relevant 
than the process that sent the message. 

We  present  Causeway,  an  open  source  postmortem 
distributed  debugger  for  examining  the  behavior  of 
distributed programs built  as communicating event loops. 
Our  message-oriented approach  follows  the  flow  of 
messages  across  process  and  machine  boundaries.  We 
discuss our experience with the Waterken web server [2] 
which  we  have  instrumented  to  generate  Causeway's 
language-neutral trace log format [3]. 

Other systems built on event loops include [8, 9, 10, 11]. 
Systems  combining  communicating  event  loops  with 
promises  include  [12,  13,  14,  15,  16].  Causeway  and 
Waterken also support promises, but promises are beyond 
the  scope  of  this  paper.  See  [17]  for  a  comprehensive 
discussion of the promise-based approach. 

Distributed  programs  often  generate  overwhelming 
amounts of trace data. The search for a bug must employ 
effective strategies  for  choosing what  to  pay  attention to 
and what to ignore. 

Noticing  a  bug  symptom  –  a  discrepancy  between 
expectations and actual behavior – usually does not reveal 
the bug. The symptom is a consequence of the bug. Starting 



with a bug symptom, debugging proceeds by searching for 
an earlier discrepancy that accounts for this one. The search 
continues  until  a  discrepancy  caused  directly  by  a  logic 
error, rather than an earlier discrepancy, is discovered. This 
search  does  not  proceed  backward  in  time,  but  rather, 
backward in causal influence. To help guide the search, we 
need to navigate the structure of distributed causality. 

Lamport's  seminal  paper  [18]  introduces  the  happened-
before relation. This partial order models potential causality 
between events:  If  event  x happened before event  y it  is 
possible that  x influenced  y. If  x did not happen before  y, 
then, to explain a discrepancy at y, we can safely ignore x. 
The  partial  order  defined  by  happened-before  thus  helps 
narrow  the  search  for  a  bug,  but  too  many  candidates 
remain. How can we narrow the search further? We found 
our first strategy in sequential debugging practice. 

Sequential  debuggers  help  us  focus  on  the  intended 
causality first,  by  following  the  chain  of  requests 
expressing intended computational effects. The stack view, 
central to sequential debugging, shows the nesting of calls 
expressing a chain of requests. Noticing the utility of the 
stack view for navigating call-return order, we realized that 
support for the distributed counterpart – message order – 
could  be  as  useful  for  understanding  distributed 
computation [19]. 

Message order helps us find the general neighborhood of 
the  next  discrepancy,  but  is  often  insufficient  by  itself. 
Process  order  and  call-return  order  are  then  needed  to 
explore  that  neighborhood  in  detail.  Causeway's  user 
interface supports navigation using multiple orders. 

These event orders often contain repeated patterns of events 
– a mass of detail obscuring the clues of interest. Our next 
strategy,  event abstraction [20], aggregates event patterns 
into  abstract  events.  With  Causeway's  event  promotion, 
filtering, and aggregation, users customize this abstraction 
according to which details they currently consider relevant. 

Causeways primary innovations: 

• Shifting emphasis from process order to message 
order. 

• Integrated navigation across multiple orders.

• Event  abstraction  by  customizing  promotion, 
filtering, and aggregation. 

The paper is organized as follows. Section 2 introduces the 
distinctions we use to discuss distributed causality. Section 
3  presents  the  communicating  event  loops  concurrency 
model. Section 4 presents our support for event abstraction. 
Section  5  shows  how  Causeway's  user  interface  brings 
these  elements  together  during  the  hunt  for  a  bug.  We 
conclude with a discussion of related work and our future 
plans for Causeway.

2. Distributed Causality
Lamport  defines  the  happened-before relation  to  model 
potential causality between events [18], which he explains 
in  terms  of  space-time  diagrams  such  as  Figure  1.  The 
vertical lines represent processes; each process consists of a 
sequence of events. Each event is either a local event or the 
sending or receiving of a message. Local events are loosely 
defined to be meaningful units of computation, chosen to 
best  describe the behavior of  the particular system being 
examined.  The  diagonal  lines  represent  messages  sent 
between processes.

Events  within  each  process  are  fully  ordered.  Event  p3 
happened before p4 in  process order because it  occurred 
earlier in the same process, and so may have affected state 
p4 depends on. Event q5  happened before p4 in  message 
order because q5 is the sending of the message that  was 
received  at  p4.  (In  Actor  terminology,  process  order  is 
arrival order; message order is activation order [21]). The 
transitive closure of the union of these two orders defines 
the happened-before relation. A discrepancy observed at p4 
may be caused by a bug at q1 but not r1. 

Although introduced to illustrate a formal relation, Lamport 
diagrams, with a visual emphasis on process order, became 
the standard visualization of distributed computation [31]. 
(The  time  axis  in  Figure  1  is  inverted  from  Lamport’s 
original diagrams.)

Process order shows state-based causality – how a process 
reacts to later messages depends on how it changed state in 
response to earlier messages.

The happened-before relation tells us all the possible places 
that might have caused the bug, but gives us no guidance 
about where to look first.

2.1 A Distributed Asynchronous Example
Requests  often  have  responses.  Starting  with  one-way 
asynchronous  messages,  two  patterns  for  handling 

Figure 1. Lamport Diagram



responses are  continuation-passing and promises [21].  In 
continuation-passing, a request carries a callback argument 
to  which  a  response  should  be  sent.  Waterken  and 
Causeway support both styles of response handling. Since 
continuation-passing  is  the  dominant  pattern  for  web 
application  development,  our  example  is  written  in  this 
style.  Waterken  applications  are  written  in  Joe-E,  a 
sequential subset of Java [22]. We limit our explanation of 
Waterken and Joe-E to what is required to explain the code 
snippets.

Our example program implements a procedure for handling 
new  purchase  orders.  Before  an  order  is  placed,  certain 
conditions must be met: the item is in stock and available, 
the customer’s account is in good standing, and the delivery 
options are up to date. 

An  object  residing  in  the  “buyer”  process  has  remote 
references  to  objects  residing  in  the  “product”  and 
“accounts” processes. The buyer queries the remote objects 
with asynchronous message sends. Due to the limitations of 
Java  syntax,  in  Waterken/Joe-E,  the  following  statement 
sends  the  message  and  arguments  asynchronously  to 
anObject.
    _._(anObject).aMessage(arg1, arg2);

For  conciseness,  in  this  paper  we  use  the  following 
notation.
    anObject ← aMessage(arg1, arg2);

To  collect  the  three  answers,  teller is  passed  as  an 
argument  to  each  of  the  remote  inquiries,  serving  as  a 
callback function. 
    Callback teller = 
      new AsyncAnd(_, 3, new CheckAnswers());

    inventory ← partInStock(partNo, teller);
    creditBureau ← checkCredit(name, teller);
    shipper ← canDeliver(profile, teller);

The  answers  from  the  asynchronous  inquiries  must  be 
collected  and  examined.  The  order  is  placed  only  if  all 

requirements are satisfied. The solution is an asynchronous 
adaptation  of  the  conjunctive  and operator,  familiar  from 
sequential programming, implemented below by AsyncAnd.
(1) public class AsyncAnd 
(2)       implements Callback, Serializable {  
(3)   private final Eventual _;
(4)   private int expected;
(5)   private Callback tellAreAllTrue;
(6) 
(7)   public AsyncAnd(Eventual _, 
(8)                   int expected, 
(9)                   Callback tellAreAllTrue) {
(10)    this._ = _;
(11)    this.expected = expected;
(12)    this.tellAreAllTrue = tellAreAllTrue;
(13)  }
(14)
(15)  public void run(boolean answer) {
(16)    if (tellAreAllTrue != null) {
(17)      if (answer) {
(18)        expected -= 1;
(19)        if (expected <= 0) {
(20)          _.log.comment("happened: all true");
(21)          tellAreAllTrue ← run(true);
(22)          tellAreAllTrue = null;
(23)        } else {
(24)         _.log.comment("leadsto: all true");
(25)        }
(26)      } else {
(27)        _.log.comment("found a false");
(28)        tellAreAllTrue ← run(false);
(29)        tellAreAllTrue = null;
          }
        }
      }
    }

As  each  expected  answer  is  collected,  AsyncAnd counts 
down the total (18) and reports true only if teller sees true 
for  every  expected  answer  (21).  A  false answer  short-
circuits  the logic.  If  teller sees  false,  AsyncAnd promptly 
reports false (28).

Besides  send events,  receive events,  and call  events,  the 
programmer  may indicate  that  something  of  interest  has 
occurred by logging a comment event (27). Figure 2 shows 

Figure 3. Process Order View
Figure 2. Process Order



the Lamport  diagram for  our example program. The turn 
boxes  represent  the  sequential  activity  spawned  by 
receiving a message, as explained in Section 3.

Causeway's process-order view (Figure 3) is a tabbed view, 
where  each  tab  represents  a  process.  For  the  selected 
process – in this case, the buyer process – it shows a 2-level  
tree  of  events  in  chronological  order.  The  parent  item 
represents  a  receive  event;  nested  items  are  comment 
events  and  asynchronous  message  sends.  In  the  next 
section,  we  argue  that  this  process-order  view  is  less 
helpful than one might expect.

2.2 Sequential Debugging Revisited
Consider the stack view in sequential debuggers. For most 
of  us,  the  stack  view is  central  to  debugging  sequential 
programs, but because of its  familiarity, we don’t  see its 
excellent properties.

When  the  stack  view  shows  the  state  of  a  sequential 
program,  total  causality  is  not  shown.  The  call  chain 
describes  partial  causality.  Most  of  the  time  this  is  the 
interesting control flow describing what is going on. The 
call chain helps answer the question “What likely caused 
this to happen”.

Figure 4 shows a sequence of events in a single sequential 
process.

Let’s say, to track down a bug, you set a breakpoint at q5. 
When hit, the sequential  debugger shows a useful  set  of 
variables and the call chain.

In this case, at the q5 breakpoint, the call chain refers to q2. 
But the happened-before relation tells us that it’s possible 
that q3 or q4 caused the bug. Wouldn’t we necessarily find 
the bug faster if the debugger showed full process order?

Our experience with sequential debugging tells us, no – the 
partial causality shown by the call chain turns out to be the 
interesting causality in most cases. Usually, walking back 
the stack is enough. When this does not reveal the cause, 
you  go  backward  in  time  to  set  a  breakpoint.  By going 
backward  in  time,  you  make  use  of  the  more  detailed 
process order. In this case, you would set a breakpoint at q2 

and run the sequence from the beginning, stepping through 
state changes.

To find the bug that manifests at q5, the first question to 
consider  is what  is  the  most significant  influence on the 
current state at q5. The answer is most likely to be found in 
the chain of prior requests. By knowing to focus on q2 and 
to ignore q3 and q4, your debugging effort is put to good 
effect.

In the worst case, potential causality – the happened-before 
relation – must be considered. You must examine q2, q3, 
q4,  and q5,  although you can know that  you  can safely 
ignore q6.

Sequential debuggers, by presenting partial causality – the 
call-return order of  a sequential program – support  more 
effective  debugging.  Does  this  lesson  generalize  to 
distributed debugging?

2.3 Message-based Causality
Consider a bug that manifests itself at p4 in Figure 1. Event 
p3 happened before p4 simply because it occurred earlier in 
the same process. Event q5 happened before p4 because q5 
expressed a request that p4 tried to satisfy. The lesson from 
sequential debugging is that we should start our search at 
q5.

Using  Actor  terminology,  the  call  chain  of  a  sequential 
program shows  activation order.  For  distributed  systems 
activation  order  includes  local  calls  and  distributed 
messages. By following activation order, you see the chain 
of requests expressing intended computational  effects.  Of 
course,  buggy  programs  include  unintended  side-effects. 
But focusing on the intended causality first is an effective 
debugging strategy.

This  observation,  more  than  anything  else,  was  the 
motivation behind Causeway: that activation order could be 
as  significant  to  understanding  distributed  program 
behavior as it has proven to be for sequential programs.

Figure 4. Call-return Order



Figure  5  shows  the  message  events  from  the  Lamport 
diagram of Figure 2 with the visual emphasis on message 
order. Causeway's message-order view (Figure 6) shows the 
order  in  which  events  caused  other  events  by  sending 
messages. The model is simple: a message is received and 
this causes other messages to be sent. The initial message is 
the cause; subsequent messages are effects. These effects 
can, in turn, cause later effects. Message order is reflected 
in the outline structure; nested events were caused by the 
parent event. Causeway assigns each process a color so we 
can see when message flow crosses process boundaries. 

Here, we see that  the bureau's reply to the buyer's query 
satisfies  the  final  requirement.  Meeting  all  conditions 
causes the order to be placed. 

Figure 6. Message Order View

Figure 5. Message Order



3. Communicating Event Loops
Causeway supports  debugging  distributed  programs built 
on the communicating event loops concurrency model. In 
this model, a process consists of a heap of objects and a 
single thread of control. The control sequence combines the 
immediate  call-return  model  of  sequential  computation 
with  the  asynchronous  message-passing  Actor  model  of 
distributed  computation.  Each  object  resides  within  one 
process. If objects C and O are in the same process, C can 
make  requests  of  O using  either  immediate  calls  or 
asynchronous  sends.  If  C and  O reside  in  different 
processes,  C can  make  requests  of  O using  only 
asynchronous sends.

An asynchronous send of message  M to object  O residing 
in process V enqueues on V's fifo queue a pending delivery 
recording the need to eventually deliver M to O.

Within its  single  thread of  control,  a  process  has  both a 
normal call stack for immediate call-return and a fifo queue 
containing all the pending deliveries (Figure 9). Execution 
proceeds  by  taking  a  pending  delivery  from the  queue, 
delivering its message to its object, and processing all the 
resulting immediate-calls in conventional call-return order. 
This is called a turn. A turn is an atomic unit of operation. 
When a pending delivery completes,  the  next  one is  de-
queued,  and  so  forth.  The  thread  proceeds  from  top  to 
bottom and then from left to right.

What determines a turn boundary? Each receive event starts  
a new turn and the turn continues with a sequence of local 
calls and send events until the call stack is empty. Message 
order  forms a  tree  of  turns.  Within each turn,  call  order 
forms a tree rooted in its initial receiving event. As shown 
in Figure 7, the chain of requests leading to  [b13] is the 
path backward through the combined activation tree.

Causeway's  stack  view  (Figure  8)  portrays  the  same 
information as Figure 7, but in the opposite order. As with 
sequential debugging, the question is often: How did we get 
here – what chain of activations led to the current event? 
The  stack  view  helps  answer  this  question  by  looking 
backward in activation order, presenting both asynchronous 
sends and immediate calls that led to the current event. 

An entry in the stack view is a 2-level subtree. The parent 
item represents a send event; its nested items represent the 
stack  trace  captured  for  that  event.  The  top  entry  is  the 
currently  selected  event  in  the  message-order  view. 
Subsequent  entries  are  built  by  following  message  order 
back  in  time to  sending  events.  The  two levels  together 
show the path back through activation order. As an item is 
selected,  the corresponding source position is highlighted 
(Figure 10).

Figure 7. Activation Order

Figure 8. Stack View

Figure 9. Event Loop Process State

Figure 10. Source View



4. Event Abstraction
Causeway's  process-order  view (Figure  3)  and  message-
order view (Figure 6) describe distributed behavior, giving 
an overview of program execution by showing how a set of 
events are related. But the overview is only as good as the 
set of events it describes. Non-trivial programs will obscure 
the overview with repeated patterns of irrelevant details.

As  programmers,  we  use  abstraction  to  hide  detail.  We 
might like our debugger to hide events internal to a reliable 
abstraction, presenting it instead as a higher level primitive. 
We can collapse pathways that go through event patterns by 
recognizing  that  a  repeated  event  pattern  is  generally 
brought about by a piece of code representing a particular 
abstraction. 

Of course, while debugging, we often want to see through 
some  encapsulation  barriers,  to  reveal  imperfect 
abstractions.  As  our  suspicions  change,  so  should  the 
abstraction  boundaries  respected  by  our  debugger.  The 
Causeway user controls which event patterns to abstract by 
choosing which  bodies  of  code  to  treat  as  opaque black 
boxes, and which should be subject to open examination.

Causeway  supports  customizable  event  promotion, 
filtering, and aggregation. We describe each mechanism in 
isolation  referring  to  Figures  11  and  12  (derived  from 
Figure 5) to give a  visual  explanation of our  algorithms. 
These  algorithms  are  implemented  by  a  post-order 
traversal,  i.e.,  they  proceed  from  right  to  left  in  our 
diagrams.  Finally we show how these mechanisms work in 
concert  to  enable  the  programmer  to  tailor  Causeway's 
presentation to match their current suspicions.

4.1 Event Promotion
It  can  be  useful  to  highlight  the  significance  of  certain 
state-based causal  relations by promoting them to  virtual 
message  order.  AsyncAnd is  a  good  candidate  for  event 
promotion. Let's say all expected answers are true. In this 
case, it reports true to its callback function and the order is 
placed. The message-order view (Figure 6) shows that the 
response to the credit check caused the order to be placed, 

but  the  programmer  knows  there  were  actually  three 
causes. What happened to the other two contributors?

The  first  two  answers  change  local  state  (a  counter  is 
decremented);  the  final  answer  causes  a  message  send. 
Only the final answer appears in the message-order view. 
This correctly reflects how AsyncAnd works but not what it 
does. 

Causeway's  customizable  event  promotion  builds  on 
Waterken's  support  for  logging  comment  events,  as 
explained in Section 2.1. Notice the comments logged by 
AsyncAnd. The following comment is simply a string output 
– basically, a printf debugging statement. 
    _.log.comment("found a false");

The following two comments demonstrate how the AsyncAnd 
author  can  indicate  that  one  turn  has  significantly 
contributed toward the occurrence of a later turn.
    _.log.comment("leadsto: all true");
    _.log.comment("happened: all true");

The  “leadsto:”  prefix  logs  that  the  current  turn  has 
significantly contributed toward the possible occurrence of 
a  later  event  of  interest.  The  “happened:” prefix  together 
with  a  matching  suffix  indicates  that  this  event  has 
occurred.  

This comment format is not defined by Causeway; rather, it 
is  a  convention  established  between  the  application 
developer  and  the  programmer  customizing  Causeway's 
event  promotion.  In  step  ❶  of  Figure  11,  we show the 
purple  arcs  added to  promote  the  leadsto: events  into 
secondary  causes  of  the  turn  containing  the  matching 
happened:.  Notice  that  if  one  of  the  inputs  is  false,  no 
matching happened: will be logged, and the earlier leadsto: 
events will not be promoted.

In actual use, the comment records uniquely identify their 
AsyncAnd instance,  so  two  overlapping  but  independent 
instances are promoted separately.

Figure 12. AggregationFigure 11. Promotion & Filtering



4.2 Event Filtering
Most  debuggers  support  filtering  infrastructure  code  and 
some  allow selective  filtering  of  user  code  [26]  to  hide 
stack frames executing in the filtered sources. Causeway's 
customizable filters likewise list the source paths that can 
be optionally shown or hidden.

Hiding stack frames supports  customizable abstraction at 
the call-return level.  Step ❷  of Figure 11 filters out  the 
stack frames whose source is in the  AsyncAnd class. When 
all the stack frames of an event are filtered out, that event 
becomes unlabeled, erasing the text shown in red on Figure 
11. But even without event labels, the process and message-
order  views  would continue  to  present  distracting detail. 
Can we do better?

4.3 Event Aggregation
After filtering erases the red text in Figure 11, some turns 
will  contain  only  unlabeled  events,  becoming  empty.  In 
Figure  11,  all  three  turns  containing  red  text  happen  to 
become empty, but this will not generally be the case.

When a turn is empty, it represents computation internal to 
the  abstractions  the  programmer  has  already  requested 
Causeway to hide.  Assuming the filtered abstractions are 
working  correctly,  these  turns  do  not  contribute  to 
understanding the code currently considered relevant. Our 
final abstraction step, event aggregation, erases empty turns 
when it can, while preserving the causal structure flowing 
through them.

When  an  empty  turn  is  a  message-order  leaf  –  when  it 
causes no further turns in virtual message-order – then it 
can simply be erased.  Any antecedent  events are  instead 
presented as  causing  nothing.  When this  results  in  other 
empty turns becoming leaves, they too are erased, etc. 

After erasing all leaves, some empty turns are left causing 
only one further turn in virtual message order. These empty 
turns may also be erased with care. Again, in Figure 11, all 
three empty turns happen to cause only one further turn, but 
this will again not generally be the case. 

For each empty turn causing only one further turn, we first 
splice all arcs into that turn to instead go into the only event 

that turn causes. In step ❸ of Figure 12, we first splice all 
three  arcs  into  [b10] to  instead  go  into  [b11].  With  the 
target of [b6] now recorded as [b11], in step ❹, we splice 
the  arc  from  [p1] to  [b6] to  instead  go  into  [b11];  and 
likewise with the arc from [p2] to [b7]. Finally, in step ❺, 
we erase all uncaused empty turns. Turns [b6], [b7], [b10], 
and  [b11] are  thus  aggregated  together  into  [b11].  The 
resulting  graph  is  shown  in  Figure  13.  The  resulting 
message-order  view  presenting  this  graph  is  shown  in 
Figure 14. 

This algorithm will erase all inconsequential empty turns, 
but  it  will  leave  in  place  those  empty  turns  that  cause 
multiple  other  turns,  as  these  carry  important  structural 
information. To erase them would require duplicating other 
arcs, which would be misleading. 

The presented directed acyclic  graph is  still  mostly tree-
like, and the non-virtual message-based causes still form an 
actual  tree.  Notice  that  [buyer,  11]  appears  three  times. 
Each  occurrence  is  preceded  by  an  icon  which  indicates 
that  this  event  has  multiple  causes.  Causeway's  message 
order  view  presents  virtual  message  order  as  an  outline 
reflecting  the  primary  tree,  with  these  icons  marking 
secondary causes. 

Figure 14. Simpler Message Order View

Figure 13. Abstracted Message Order



5. Causeway Viewer
In this section we present Causeway's user interface. Figure 
15 shows the principal views from Causeway's postmortem 
display.  Causeway's  views  integrate  multiple  orders.  The 
process  and  message-order  views  describe  distributed 
behavior,  giving  an  overview  of  program  execution  by 
showing how a set of events are related. The stack view and 
source code view are familiar from sequential debugging. 
They detail the internal structure of an event.

The views have been introduced in earlier sections. Here, 
we  describe  an  interactive  sequence  for  a  debugging 
scenario.  For  concreteness,  we  introduce  a  bug  into  the 
simple  purchase order  program described in  Section 2.1. 
Event  promotion (Section 4.1)  is  enabled;  event filtering 
(Section 4.2) is disabled.

The problem, as reported, is that an order was placed for a 
customer with bad credit. The search begins with the buyer 
process  since  it  implements  the  controls  for  order 
processing. To see all events logged by the buyer process, 
select the buyer tab in the process-order view. This is the 
top, leftmost view in the interaction sequence described by 

Figure 16. Here we see a tree of events, in chronological 
order, for the buyer process.

The sequence of events shown seems to describe correct 
behavior: three responses to queries were received and the 
order  was  placed.  But  the  order  should  not have  been 
placed, so the next question is  what led to the comment 
event, logging that the order had been placed. Select that 
event ❶ to get more information. Selection is synchronized 
across views, so the corresponding event is automatically 
selected  in  the  message-order  view  ❷.  Here we see  the 
order  in  which  events  caused  other  events  by  sending 
messages.  Message  order  is  reflected  in  the  outline 
structure; nested events were caused by the parent event. 
Message  flow  is  followed  across  process  boundaries. 
Causeway assigns each process a color so we can see when 
message order crosses process boundaries. 

Scanning  up  the  message  tree,  the  happened:  all  true 
comment catches the eye. As explained in Section 4.1, this 
indicates that all conditions were met. To investigate this 
further,  select  its  cause  ❸.  The  corresponding  event  is 
selected in the process-order view ❹ and this looks odd – 
the order was placed after the second response rather than 

Figure 15. Causeway User Interface



the third. To dig deeper, expand the tree ❺. Now, to focus 
on a particular event, attention shifts to the stack view.

The top entry in the stack view is the currently selected 
event  in  the  message-order  view.  Subsequent  entries  are 
built by following message order back in time to sending 
events. The two levels together show the path back through 
activation order. Expand the tree and select a message ❻ to 
see the corresponding source code in the source view.

We see that  AsyncAnd is  incorrectly  instantiated to expect 
two answers, rather than three. The bug was not specific to 
the credit check, as initially thought. Whichever response 
happened to be received last, would be ignored.

Causeway is not a  sequential debugger and the sequence 
described did not lead directly to the bug. Our purpose is to 
give a sense of the facility of moving between the process 

and  message-order  views  to  fathom  the  behavior  of  a 
distributed program. By showing how a set of events are 
related,  these  views  give  an  overview  of  program 
execution. When focus shifts to a particular event, the stack 
view and source view give the event details.

Notice  that  synchronized  selection  between  the  process-
order  and  message-order  views  is  useful  since,  taken 
together, they convey the equivalent of Lamport diagrams 
(Figure 1).

6. Related Work
Debuggers can be categorized by their primary purpose and 
by the particular support they provide. Is a debugger used 
for  understanding  behavior  for  correctness  or  for 
performance  analysis?  Is  it  primarily  for  development 
debugging  or  production  debugging?  Distributed  or 

Figure 16. Hunting for a Bug



sequential? Runtime or postmortem? Is it extensible? Does 
it support crossing various boundaries, such as user-kernel, 
component layers, or machine boundaries. 

Causeway is  a  distributed,  postmortem debugger  used to 
understand  program  behavior  for  correctness,  primarily 
during development and testing.

Postmortem  debugging  involves  generating  trace  logs, 
collecting  logged  information,  post-processing  logs  to 
extract  relevant  information,  and  the  presentation  of  the 
resulting picture of the traced computation.

6.1 Generating Traces
Causeway's  trace  logs  are  so  voluminous  that  their 
generation  can  affect  system  behavior.  For  debugging 
correctness  issues  during  development,  this  cost  is 
affordable.  But  debuggers  aimed  at  production  or 
performance analysis must do better.

DTrace  [23]  is  an  example  of  an  engineering  effort 
attempting to solve these problems. DTrace is a dynamic 
instrumentation  framework  integrated  into  the  Solaris 
operating system. It is designed for performance analysis of 
both user and kernel-level software running on production 
systems.  It  supports  user-controlled  instrumentation  that 
can be enabled and disabled dynamically. Users of DTrace 
can express front-line filters – filtering logic that runs at the 
point  of  trace  generation  –  using  DTrace's  specialized 
programming language, D. Amoeba [25] similarly supports 
complex front-line filters to discard irrelevant trace records. 
Unlike DTrace, Amoeba supports distributed debugging.

Causeway's  stack-frame  filtering  currently  happens  only 
during post-processing. When the programmer is confident 
enough in their lack of interest in some code, they could 
assign that portion of the filtering task to front-line filters 
supported  directly  by  the  logging  system.  Neither 
Causeway nor Waterken currently support this option. For 
stack frames suppressed by front-line filters, there would be 
no option to retroactively reveal them as the information is 
already lost.

6.2 Collecting Traces
Distributed systems face inescapable problems – partition, 
crash-revival  of  individual  processes  and  servers,  the 
participation  of  non-instrumented  components,  and  the 
issues that arise when computing across administrative and 
trust boundaries. These problems can cause difficult bugs 
and  they  can  also  interfere  with  debugging.  Each  can 
prevent access to some log records. To tolerate partial logs, 
Causeway  presents  those  causal  relationships  that  it  can 
derive from whatever logs are available. But this derivation 
is simplified by Causeway's assumption that all causality of 
interest is described in terms of the communicating event 
loops model.

X-Trace [24] is  a dynamic,  integrated tracing framework 
that  gives  a  comprehensive  view  of  the  behavior  of 
distributed  components  across  layers  and  machines.  The 

actual  paths  taken  by  data  messages  are  traced  across 
devices and layers. The construction of a complete task tree 
requires  modification  to  clients,  servers  and  network 
devices to propagate tracing metadata and to log reports. 
Like Causeway, X-Trace is tolerant of partial logs, though 
its reconstruction task is more challenging. 

6.3 Extracting Relevance from Traces
Millipede [37] and IDLI [35] are built to support multilevel  
debugging, integrating the sequential view of conventional 
debuggers  with  support  for  message  level and  protocol  
level debugging. Causeway has no analog of their protocol 
level  debugging,  which  attempts  to  determine  whether 
logged  messages  conform  to  or  violate  a  protocol 
specification.  In  Millipede  and  IDLI,  log  records  are 
collected into a relational database. For those questions that 
can  be  formulated  as  database  queries,  this  strategy can 
provide efficient answers even from voluminous logs. 

Amoeba performs post-processing event abstraction using 
customizable  recognizers –  state  machines  matching 
meaningful  patterns  of  events  [25].  Only  these  abstract 
events are then presented by Amoeba's user interface.

Whereas  Amoeba  and  Causeway  only  abstract  events  as 
directed by the user, Kunz enhanced the Poet debugger to 
“derive suitable abstraction hierarchies automatically.” [20] 
Kunz  constrains  these  automatically  discovered 
abstractions  to  satisfy  his  convexity constraint,  which  is 
best  explained  by  counter-example.  If  concrete  event  X 
happened before event Y, and Y happened before Z, then an 
abstract event A which aggregates X and Z but not Y would 
not  be  convex,  since  part  of  A happens  before  Y and  Y 
happens before another part of A. By forbidding such non-
convex  abstract  events,  the  resulting  graph  of  abstract 
events can still be presented simply.

For communicating event loops systems, Kunz's convexity 
rule is safe but too conservative. If an inconsequential turn 
happened  to  occur  in  our  example  buyer  process 
interleaved  between  two  calls  to  teller,  the  convexity 
constraint  would  prevent  the  aggregation  explained  in 
Section  4.3.  Instead,  Causeway's  aggregation  algorithm 
only  preserves  Kunz  convexity  regarding  message  order 
taken  by  itself.  This  contrast  demonstrates  well  why 
message order is generally more informative for reasoning 
about communicating event loops.

6.4 Presenting Traced Computation
Distributed debuggers invariably emphasize process order 
in  their  presentation  of  distributed  computation.  In  [37] 
Kunz further enhances Poet to recognize logged  brackets. 
As with Causeway's logged comments, these brackets were 
emitted by the program based on directives inserted by the 
programmer. Kunz provides an interactive visualization for 
forming  abstract  events  by  bracketing  intervals  along 
multiple parallel process order timelines. 



While useful for Kunz's problem domain, this process order 
bracketing is inappropriate for communicating event loops. 
An  independent  turn  that  happens  to  interleave  between 
two  brackets  must  again  prevent  abstraction  to  avoid 
inclusion  in  the  aggregate.  The  repeating  event  patterns 
needing  abstraction  are  only  stable  when  viewed  in 
message  order.  Their  interleaving  with  other  events  in 
process  order  is  generally  noise  that  should  not  inhibit 
abstraction.

Most distributed debuggers debug only the message level, 
seeing each sequential process as a black box [40] to debug 
using  separate  sequential  debuggers.  The  dominant 
debugger for the browser side of web development, Firebug 
[39], does include both a conventional sequential debugger 
and some support for tracking AJAX messages. However, 
these two levels  remain unintegrated.  Firebug shows the 
request and reply headers for an AJAX message but does 
not capture the stack at the point of the AJAX call.

Sequential  debuggers  provide  an  integrated  view  of  a 
program's sequential control flow together with access to its 
data state. Eclipse Step Filters [26] allow selective filtering 
of  user  and  system-level  code,  and  inspired  Causeway's 
approach to source-based filtering.

Although Causeway does provide integrated views across 
both  sequential  and  distributed  control  flow,  Causeway 
provides no view of data state.  To examine past data states, 
IDLI  [35]  logs  enough  information  to  deterministically 
replay  individual  processes,  to  provide  the  data  access 
familiar from live debuggers, and do so for past states. 

Waterken  application  are  programmed  in  Joe-E,  a 
deterministic  subset  of  Java  [36].  Were  Causeway's  logs 
enhanced to capture the additional information needed, Joe-
E programs could be reliably replayed, perhaps using an 
enhanced Waterken server as a replay harness. However, a 
substantial  engineering effort  would be required to make 
this practical.

7. Discussion and Future Work
Communicating event loops present both benefits and new 
challenges for distributed debugging. Since each process is 
a sequential program sending only asynchronous messages, 
each program implicitly has mutually-exclusive access to 
all  state to which it  has synchronous access,  so memory 
races  are  avoided  without  locking.  Without  locks  or  a 
blocking receive operation, conventional  deadlock cannot 
occur.  Most  concurrency  patterns  can  be  implemented 
without  concern  for  the  bugs  that  plague  multi-threaded 
programs.  Debugging  is  simplified,  as  is  the  job  of  the 
debugger. However, less conventional race conditions and 
liveness bugs remain. 

In Section 5 we saw a distributed consistency bug. Whether 
this  bug  manifests  on  a  given  run  depends  on  a  race 
condition – whether the bad credit report arrives before or 
after the second success. As we've seen, to track down a 

consistency bug, a good strategy is to start with an outcome 
that shouldn't have happened and look backward. 

The  AsyncAnd program presented in Section 2 contains an 
easily  missed  liveness  bug:  If  the  number  of  expected 
responses is zero, AsyncAnd should promptly report success. 
Instead,  it  fails  to  ever  call  its  callback.  When  the 
discrepancy  is  that  something  never  happens,  there's  no 
natural starting point from which to search backward. To 
track down a liveness bug, it usually works best to use the 
message view forward – to expand those branches along 
the path that should have led to the absent outcome, to see 
where it dead ends. 

7.1 Methodology 
Research on debuggers faces a methodological issue. Bugs 
purposely  created  in  order  to  examine,  such  as  our  two 
AsyncAnd examples,  are  rarely  realistic.  Realistic 
undiagnosed  bugs  are  typically  encountered  under 
pressures to get a program working rather than improve a 
debugger,  so  lessons  learned  are  not  recorded.  Our 
experiences to date with Causeway bear this out. 

• An  early  Causeway  prototype  built  by  Monica 
Anderson  at  Electric  Communities  helped  us 
debug  a  massive  distributed  graphical  virtual 
world [19]. Our memories of this experience are 
positive, but due to startup company pressures, we 
made no record of how this prototype did and did 
not help.

• To design the current Causeway user interface, we 
started with trace logs generated by running the E 
language's distributed command line loop. While 
hand simulating the visualization Causeway would 
generate from these logs, we easily found a bug 
that  had  resisted  several  earlier  attempts  at 
diagnosis [19].

• Next  was  the  DonutLab  challenge  to  build  a 
complex distributed system over a weekend [33]. 
We  did  not  have  time  to  waste  on  bugs.  With 
Causeway's help, we didn't. But again, due to time 
pressure, we made no detailed record. 

As  of  this  writing,  a  development  project  at  HP Labs, 
ScoopFS [34], has a bug that manifests only when at least 
eleven server processes are involved. Though reproducible, 
this bug has eluded diagnosis for months. ScoopFS server 
processes  are being  upgraded to  work on  the version  of 
Waterken/Joe-E  instrumented  to  emit  Causeway's  trace 
logs.  ScoopFS  clients  are  currently  programmed  in 
ActionScript  but  will  be  converted  to  JavaScript.  As  we 
employ Causeway to search for this bug, we will record our 
experiences. 

7.2 Future Work
If postmortem examination of ScoopFS server logs proves 
insufficient,  several  next  steps  are  plausible.  Once  the 



ScoopFS client  is  converted  to  JavaScript,  instrumenting 
JavaScript in the browser to emit Causeway's logs will give 
us an integrated view of client-server interactions. 

As  mentioned  in  Section  6.4,  we  could  jointly  extend 
Causeway and Waterken to  provide for  instant  replay of 
logged Joe-E computations, in order to provide access to 
past data states.

Our  displeasure  with  process  order  is  partially  due  to 
treating a process as a single undifferentiated mass of state 
– where any state change may affect any later turn in that 
process. With past data states available, we may be able to 
present  a  finer-grained  view.  For  example,  if  two 
consecutive turns read and write only disjoint portions of 
their process' state, then it cannot matter which happened 
first  in  process  order.  Recognizing  such  independence 
would allow us to view process order as a  partial order, 
enabling us to eliminate yet more events as irrelevant to a 
given bug.

Production systems present  scaling  problems.  We do not 
know the practical scaling limits of Causeway, but suspect 
it is fairly small. We designed Causeway while thinking in 
terms of tens of processes, not hundreds or thousands. As 
use expands, we hope to understand this issue better. 

8. Conclusions

The popularity of AJAX has introduced the difficult task of 
debugging  distributed  asynchronous  programs  to  the 
mainstream programmer. Due to the nature of JavaScript in 
the  browser,  these  programs  execute  as  communicating 
event  loops.  This  paper  introduced  Causeway,  a 
postmortem debugger for distributed systems built on the 
communicating event loops concurrency model.

Causeway's  novel  message-oriented  approach  supports 
navigating  the  structure  of  distributed  causality  across 
process  and  machine  boundaries.  Its  integrated  views 
describe both distributed and sequential computation. We 
demonstrated  how  Causeway  facilitates  the  search  for 
consistency  and  liveness  bugs,  and  discussed  how users 
customize  Causeway's  event  abstraction  to  hide  detail 
currently considered irrelevant.

Causeway is open source and included in the latest version 
of E, available via subversion at 
http://erights.org/download/.  Causeway recognizes a 
language neutral trace log format defined at
http://waterken.sourceforge.net/debug/.
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