
Causeway:
A message-oriented distributed debugger

Terry Stanley
Teleometry Design

tstanley@teleometry.com

Tyler Close
Hewlett Packard Labs

tyler.close@hp.com

Mark S. Miller
Google Research
erights@google.com

Abstract
An increasing number of developers face the difficult task
of debugging distributed asynchronous programs. This
trend has outpaced the development of adequate debugging
tools and currently, the best option for many is an ad hoc
patchwork of sequential tools and printf debugging.

This paper presents Causeway, a postmortem distributed
debugger that demonstrates a novel approach to
understanding the behavior of a distributed program. Our
message-oriented approach borrows an effective strategy
from sequential debugging: To find the source of
unintended side-effects, start with the chain of expressed
intentions.

We show how Causeway's integrated views – describing
both distributed and sequential computation – help users
navigate causal pathways as they pursue suspicions. We
highlight Causeway's innovative features which include
adaptive, customizable event abstraction mechanisms and
graphical views that follow message flow across process
and machine boundaries.

1. Introduction
The creative effort of designing and building software is a
process of defining goals and implementing plans to satisfy
the goals [1]. This is an iterative process applied at all
levels, from the broad scope of a large-scale architecture to
the narrow focus of a specialized algorithm. The resulting
program expresses the authors' intentions. When actual
program behavior is not what was intended, debugging is
required.

The creative effort of debugging necessarily includes
mapping observed behavior to a mental model of the
original intentions to discover misconceptions as well as
semantic and logic errors. Watching program execution at
an appropriate level of detail and without interruption,
supports this cognitive effort. Our development tools
support this well in the case of sequential single-thread
computation, but increasing numbers of developers write
distributed asynchronous applications.

One conventional approach to distributed programming
[27, 28, 29, 30] involves sequential processes sending and
receiving messages on channels. In this case, when
searching for the cause of a bug symptom, it is natural to
look backward within the suspect process first, since each
process is a single conventional program. This may be done
using a conventional sequential debugger, a distributed

debugger, or some combination. Prior distributed
debuggers emphasize this process-oriented view of
distributed computation [31].

With the emergence of the web as an application platform,
communicating event loops are rapidly becoming the
mainstream model for distributed computation. The web
browser runs multiple isolated JavaScript programs. Each
runs as an event loop, processing user interface events as
well as asynchronous messages from a server [32]. With
upcoming web standards, JavaScript event loops within the
browser will be able to send asynchronous messages to
each other [4, 5] and to multiple servers [6, 7].

In the communicating event loops model, there are no
explicit receive operations; rather, each received message
notifies a callback, spawning a sequential call-return
computation which executes to completion. The stack
becomes empty before the next incoming message is
processed. For this style of distributed computation, the
conventional debugger's stack view only reaches back to
the last receive – the one that spawned the current stack.
Since each received message is processed to completion
separately, these computations are largely independent, so
earlier state within the same process is likely less relevant
than the process that sent the message.

We present Causeway, an open source postmortem
distributed debugger for examining the behavior of
distributed programs built as communicating event loops.
Our message-oriented approach follows the flow of
messages across process and machine boundaries. We
discuss our experience with the Waterken web server [2]
which we have instrumented to generate Causeway's
language-neutral trace log format [3].

Other systems built on event loops include [8, 9, 10, 11].
Systems combining communicating event loops with
promises include [12, 13, 14, 15, 16]. Causeway and
Waterken also support promises, but promises are beyond
the scope of this paper. See [17] for a comprehensive
discussion of the promise-based approach.

Distributed programs often generate overwhelming
amounts of trace data. The search for a bug must employ
effective strategies for choosing what to pay attention to
and what to ignore.

Noticing a bug symptom – a discrepancy between
expectations and actual behavior – usually does not reveal
the bug. The symptom is a consequence of the bug. Starting

with a bug symptom, debugging proceeds by searching for
an earlier discrepancy that accounts for this one. The search
continues until a discrepancy caused directly by a logic
error, rather than an earlier discrepancy, is discovered. This
search does not proceed backward in time, but rather,
backward in causal influence. To help guide the search, we
need to navigate the structure of distributed causality.

Lamport's seminal paper [18] introduces the happened-
before relation. This partial order models potential causality
between events: If event x happened before event y it is
possible that x influenced y. If x did not happen before y,
then, to explain a discrepancy at y, we can safely ignore x.
The partial order defined by happened-before thus helps
narrow the search for a bug, but too many candidates
remain. How can we narrow the search further? We found
our first strategy in sequential debugging practice.

Sequential debuggers help us focus on the intended
causality first, by following the chain of requests
expressing intended computational effects. The stack view,
central to sequential debugging, shows the nesting of calls
expressing a chain of requests. Noticing the utility of the
stack view for navigating call-return order, we realized that
support for the distributed counterpart – message order –
could be as useful for understanding distributed
computation [19].

Message order helps us find the general neighborhood of
the next discrepancy, but is often insufficient by itself.
Process order and call-return order are then needed to
explore that neighborhood in detail. Causeway's user
interface supports navigation using multiple orders.

These event orders often contain repeated patterns of events
– a mass of detail obscuring the clues of interest. Our next
strategy, event abstraction [20], aggregates event patterns
into abstract events. With Causeway's event promotion,
filtering, and aggregation, users customize this abstraction
according to which details they currently consider relevant.

Causeways primary innovations:

• Shifting emphasis from process order to message
order.

• Integrated navigation across multiple orders.

• Event abstraction by customizing promotion,
filtering, and aggregation.

The paper is organized as follows. Section 2 introduces the
distinctions we use to discuss distributed causality. Section
3 presents the communicating event loops concurrency
model. Section 4 presents our support for event abstraction.
Section 5 shows how Causeway's user interface brings
these elements together during the hunt for a bug. We
conclude with a discussion of related work and our future
plans for Causeway.

2. Distributed Causality
Lamport defines the happened-before relation to model
potential causality between events [18], which he explains
in terms of space-time diagrams such as Figure 1. The
vertical lines represent processes; each process consists of a
sequence of events. Each event is either a local event or the
sending or receiving of a message. Local events are loosely
defined to be meaningful units of computation, chosen to
best describe the behavior of the particular system being
examined. The diagonal lines represent messages sent
between processes.

Events within each process are fully ordered. Event p3
happened before p4 in process order because it occurred
earlier in the same process, and so may have affected state
p4 depends on. Event q5 happened before p4 in message
order because q5 is the sending of the message that was
received at p4. (In Actor terminology, process order is
arrival order; message order is activation order [21]). The
transitive closure of the union of these two orders defines
the happened-before relation. A discrepancy observed at p4
may be caused by a bug at q1 but not r1.

Although introduced to illustrate a formal relation, Lamport
diagrams, with a visual emphasis on process order, became
the standard visualization of distributed computation [31].
(The time axis in Figure 1 is inverted from Lamport’s
original diagrams.)

Process order shows state-based causality – how a process
reacts to later messages depends on how it changed state in
response to earlier messages.

The happened-before relation tells us all the possible places
that might have caused the bug, but gives us no guidance
about where to look first.

2.1 A Distributed Asynchronous Example
Requests often have responses. Starting with one-way
asynchronous messages, two patterns for handling

Figure 1. Lamport Diagram

responses are continuation-passing and promises [21]. In
continuation-passing, a request carries a callback argument
to which a response should be sent. Waterken and
Causeway support both styles of response handling. Since
continuation-passing is the dominant pattern for web
application development, our example is written in this
style. Waterken applications are written in Joe-E, a
sequential subset of Java [22]. We limit our explanation of
Waterken and Joe-E to what is required to explain the code
snippets.

Our example program implements a procedure for handling
new purchase orders. Before an order is placed, certain
conditions must be met: the item is in stock and available,
the customer’s account is in good standing, and the delivery
options are up to date.

An object residing in the “buyer” process has remote
references to objects residing in the “product” and
“accounts” processes. The buyer queries the remote objects
with asynchronous message sends. Due to the limitations of
Java syntax, in Waterken/Joe-E, the following statement
sends the message and arguments asynchronously to
anObject.
 .(anObject).aMessage(arg1, arg2);

For conciseness, in this paper we use the following
notation.
 anObject ← aMessage(arg1, arg2);

To collect the three answers, teller is passed as an
argument to each of the remote inquiries, serving as a
callback function.
 Callback teller =
 new AsyncAnd(_, 3, new CheckAnswers());

 inventory ← partInStock(partNo, teller);
 creditBureau ← checkCredit(name, teller);
 shipper ← canDeliver(profile, teller);

The answers from the asynchronous inquiries must be
collected and examined. The order is placed only if all

requirements are satisfied. The solution is an asynchronous
adaptation of the conjunctive and operator, familiar from
sequential programming, implemented below by AsyncAnd.
(1) public class AsyncAnd
(2) implements Callback, Serializable {
(3) private final Eventual _;
(4) private int expected;
(5) private Callback tellAreAllTrue;
(6)
(7) public AsyncAnd(Eventual _,
(8) int expected,
(9) Callback tellAreAllTrue) {
(10) this._ = _;
(11) this.expected = expected;
(12) this.tellAreAllTrue = tellAreAllTrue;
(13) }
(14)
(15) public void run(boolean answer) {
(16) if (tellAreAllTrue != null) {
(17) if (answer) {
(18) expected -= 1;
(19) if (expected <= 0) {
(20) _.log.comment("happened: all true");
(21) tellAreAllTrue ← run(true);
(22) tellAreAllTrue = null;
(23) } else {
(24) _.log.comment("leadsto: all true");
(25) }
(26) } else {
(27) _.log.comment("found a false");
(28) tellAreAllTrue ← run(false);
(29) tellAreAllTrue = null;
 }
 }
 }
 }

As each expected answer is collected, AsyncAnd counts
down the total (18) and reports true only if teller sees true
for every expected answer (21). A false answer short-
circuits the logic. If teller sees false, AsyncAnd promptly
reports false (28).

Besides send events, receive events, and call events, the
programmer may indicate that something of interest has
occurred by logging a comment event (27). Figure 2 shows

Figure 3. Process Order View
Figure 2. Process Order

the Lamport diagram for our example program. The turn
boxes represent the sequential activity spawned by
receiving a message, as explained in Section 3.

Causeway's process-order view (Figure 3) is a tabbed view,
where each tab represents a process. For the selected
process – in this case, the buyer process – it shows a 2-level
tree of events in chronological order. The parent item
represents a receive event; nested items are comment
events and asynchronous message sends. In the next
section, we argue that this process-order view is less
helpful than one might expect.

2.2 Sequential Debugging Revisited
Consider the stack view in sequential debuggers. For most
of us, the stack view is central to debugging sequential
programs, but because of its familiarity, we don’t see its
excellent properties.

When the stack view shows the state of a sequential
program, total causality is not shown. The call chain
describes partial causality. Most of the time this is the
interesting control flow describing what is going on. The
call chain helps answer the question “What likely caused
this to happen”.

Figure 4 shows a sequence of events in a single sequential
process.

Let’s say, to track down a bug, you set a breakpoint at q5.
When hit, the sequential debugger shows a useful set of
variables and the call chain.

In this case, at the q5 breakpoint, the call chain refers to q2.
But the happened-before relation tells us that it’s possible
that q3 or q4 caused the bug. Wouldn’t we necessarily find
the bug faster if the debugger showed full process order?

Our experience with sequential debugging tells us, no – the
partial causality shown by the call chain turns out to be the
interesting causality in most cases. Usually, walking back
the stack is enough. When this does not reveal the cause,
you go backward in time to set a breakpoint. By going
backward in time, you make use of the more detailed
process order. In this case, you would set a breakpoint at q2

and run the sequence from the beginning, stepping through
state changes.

To find the bug that manifests at q5, the first question to
consider is what is the most significant influence on the
current state at q5. The answer is most likely to be found in
the chain of prior requests. By knowing to focus on q2 and
to ignore q3 and q4, your debugging effort is put to good
effect.

In the worst case, potential causality – the happened-before
relation – must be considered. You must examine q2, q3,
q4, and q5, although you can know that you can safely
ignore q6.

Sequential debuggers, by presenting partial causality – the
call-return order of a sequential program – support more
effective debugging. Does this lesson generalize to
distributed debugging?

2.3 Message-based Causality
Consider a bug that manifests itself at p4 in Figure 1. Event
p3 happened before p4 simply because it occurred earlier in
the same process. Event q5 happened before p4 because q5
expressed a request that p4 tried to satisfy. The lesson from
sequential debugging is that we should start our search at
q5.

Using Actor terminology, the call chain of a sequential
program shows activation order. For distributed systems
activation order includes local calls and distributed
messages. By following activation order, you see the chain
of requests expressing intended computational effects. Of
course, buggy programs include unintended side-effects.
But focusing on the intended causality first is an effective
debugging strategy.

This observation, more than anything else, was the
motivation behind Causeway: that activation order could be
as significant to understanding distributed program
behavior as it has proven to be for sequential programs.

Figure 4. Call-return Order

Figure 5 shows the message events from the Lamport
diagram of Figure 2 with the visual emphasis on message
order. Causeway's message-order view (Figure 6) shows the
order in which events caused other events by sending
messages. The model is simple: a message is received and
this causes other messages to be sent. The initial message is
the cause; subsequent messages are effects. These effects
can, in turn, cause later effects. Message order is reflected
in the outline structure; nested events were caused by the
parent event. Causeway assigns each process a color so we
can see when message flow crosses process boundaries.

Here, we see that the bureau's reply to the buyer's query
satisfies the final requirement. Meeting all conditions
causes the order to be placed.

Figure 6. Message Order View

Figure 5. Message Order

3. Communicating Event Loops
Causeway supports debugging distributed programs built
on the communicating event loops concurrency model. In
this model, a process consists of a heap of objects and a
single thread of control. The control sequence combines the
immediate call-return model of sequential computation
with the asynchronous message-passing Actor model of
distributed computation. Each object resides within one
process. If objects C and O are in the same process, C can
make requests of O using either immediate calls or
asynchronous sends. If C and O reside in different
processes, C can make requests of O using only
asynchronous sends.

An asynchronous send of message M to object O residing
in process V enqueues on V's fifo queue a pending delivery
recording the need to eventually deliver M to O.

Within its single thread of control, a process has both a
normal call stack for immediate call-return and a fifo queue
containing all the pending deliveries (Figure 9). Execution
proceeds by taking a pending delivery from the queue,
delivering its message to its object, and processing all the
resulting immediate-calls in conventional call-return order.
This is called a turn. A turn is an atomic unit of operation.
When a pending delivery completes, the next one is de-
queued, and so forth. The thread proceeds from top to
bottom and then from left to right.

What determines a turn boundary? Each receive event starts
a new turn and the turn continues with a sequence of local
calls and send events until the call stack is empty. Message
order forms a tree of turns. Within each turn, call order
forms a tree rooted in its initial receiving event. As shown
in Figure 7, the chain of requests leading to [b13] is the
path backward through the combined activation tree.

Causeway's stack view (Figure 8) portrays the same
information as Figure 7, but in the opposite order. As with
sequential debugging, the question is often: How did we get
here – what chain of activations led to the current event?
The stack view helps answer this question by looking
backward in activation order, presenting both asynchronous
sends and immediate calls that led to the current event.

An entry in the stack view is a 2-level subtree. The parent
item represents a send event; its nested items represent the
stack trace captured for that event. The top entry is the
currently selected event in the message-order view.
Subsequent entries are built by following message order
back in time to sending events. The two levels together
show the path back through activation order. As an item is
selected, the corresponding source position is highlighted
(Figure 10).

Figure 7. Activation Order

Figure 8. Stack View

Figure 9. Event Loop Process State

Figure 10. Source View

4. Event Abstraction
Causeway's process-order view (Figure 3) and message-
order view (Figure 6) describe distributed behavior, giving
an overview of program execution by showing how a set of
events are related. But the overview is only as good as the
set of events it describes. Non-trivial programs will obscure
the overview with repeated patterns of irrelevant details.

As programmers, we use abstraction to hide detail. We
might like our debugger to hide events internal to a reliable
abstraction, presenting it instead as a higher level primitive.
We can collapse pathways that go through event patterns by
recognizing that a repeated event pattern is generally
brought about by a piece of code representing a particular
abstraction.

Of course, while debugging, we often want to see through
some encapsulation barriers, to reveal imperfect
abstractions. As our suspicions change, so should the
abstraction boundaries respected by our debugger. The
Causeway user controls which event patterns to abstract by
choosing which bodies of code to treat as opaque black
boxes, and which should be subject to open examination.

Causeway supports customizable event promotion,
filtering, and aggregation. We describe each mechanism in
isolation referring to Figures 11 and 12 (derived from
Figure 5) to give a visual explanation of our algorithms.
These algorithms are implemented by a post-order
traversal, i.e., they proceed from right to left in our
diagrams. Finally we show how these mechanisms work in
concert to enable the programmer to tailor Causeway's
presentation to match their current suspicions.

4.1 Event Promotion
It can be useful to highlight the significance of certain
state-based causal relations by promoting them to virtual
message order. AsyncAnd is a good candidate for event
promotion. Let's say all expected answers are true. In this
case, it reports true to its callback function and the order is
placed. The message-order view (Figure 6) shows that the
response to the credit check caused the order to be placed,

but the programmer knows there were actually three
causes. What happened to the other two contributors?

The first two answers change local state (a counter is
decremented); the final answer causes a message send.
Only the final answer appears in the message-order view.
This correctly reflects how AsyncAnd works but not what it
does.

Causeway's customizable event promotion builds on
Waterken's support for logging comment events, as
explained in Section 2.1. Notice the comments logged by
AsyncAnd. The following comment is simply a string output
– basically, a printf debugging statement.
 _.log.comment("found a false");

The following two comments demonstrate how the AsyncAnd
author can indicate that one turn has significantly
contributed toward the occurrence of a later turn.
 _.log.comment("leadsto: all true");
 _.log.comment("happened: all true");

The “leadsto:” prefix logs that the current turn has
significantly contributed toward the possible occurrence of
a later event of interest. The “happened:” prefix together
with a matching suffix indicates that this event has
occurred.

This comment format is not defined by Causeway; rather, it
is a convention established between the application
developer and the programmer customizing Causeway's
event promotion. In step ❶ of Figure 11, we show the
purple arcs added to promote the leadsto: events into
secondary causes of the turn containing the matching
happened:. Notice that if one of the inputs is false, no
matching happened: will be logged, and the earlier leadsto:
events will not be promoted.

In actual use, the comment records uniquely identify their
AsyncAnd instance, so two overlapping but independent
instances are promoted separately.

Figure 12. AggregationFigure 11. Promotion & Filtering

4.2 Event Filtering
Most debuggers support filtering infrastructure code and
some allow selective filtering of user code [26] to hide
stack frames executing in the filtered sources. Causeway's
customizable filters likewise list the source paths that can
be optionally shown or hidden.

Hiding stack frames supports customizable abstraction at
the call-return level. Step ❷ of Figure 11 filters out the
stack frames whose source is in the AsyncAnd class. When
all the stack frames of an event are filtered out, that event
becomes unlabeled, erasing the text shown in red on Figure
11. But even without event labels, the process and message-
order views would continue to present distracting detail.
Can we do better?

4.3 Event Aggregation
After filtering erases the red text in Figure 11, some turns
will contain only unlabeled events, becoming empty. In
Figure 11, all three turns containing red text happen to
become empty, but this will not generally be the case.

When a turn is empty, it represents computation internal to
the abstractions the programmer has already requested
Causeway to hide. Assuming the filtered abstractions are
working correctly, these turns do not contribute to
understanding the code currently considered relevant. Our
final abstraction step, event aggregation, erases empty turns
when it can, while preserving the causal structure flowing
through them.

When an empty turn is a message-order leaf – when it
causes no further turns in virtual message-order – then it
can simply be erased. Any antecedent events are instead
presented as causing nothing. When this results in other
empty turns becoming leaves, they too are erased, etc.

After erasing all leaves, some empty turns are left causing
only one further turn in virtual message order. These empty
turns may also be erased with care. Again, in Figure 11, all
three empty turns happen to cause only one further turn, but
this will again not generally be the case.

For each empty turn causing only one further turn, we first
splice all arcs into that turn to instead go into the only event

that turn causes. In step ❸ of Figure 12, we first splice all
three arcs into [b10] to instead go into [b11]. With the
target of [b6] now recorded as [b11], in step ❹, we splice
the arc from [p1] to [b6] to instead go into [b11]; and
likewise with the arc from [p2] to [b7]. Finally, in step ❺,
we erase all uncaused empty turns. Turns [b6], [b7], [b10],
and [b11] are thus aggregated together into [b11]. The
resulting graph is shown in Figure 13. The resulting
message-order view presenting this graph is shown in
Figure 14.

This algorithm will erase all inconsequential empty turns,
but it will leave in place those empty turns that cause
multiple other turns, as these carry important structural
information. To erase them would require duplicating other
arcs, which would be misleading.

The presented directed acyclic graph is still mostly tree-
like, and the non-virtual message-based causes still form an
actual tree. Notice that [buyer, 11] appears three times.
Each occurrence is preceded by an icon which indicates
that this event has multiple causes. Causeway's message
order view presents virtual message order as an outline
reflecting the primary tree, with these icons marking
secondary causes.

Figure 14. Simpler Message Order View

Figure 13. Abstracted Message Order

5. Causeway Viewer
In this section we present Causeway's user interface. Figure
15 shows the principal views from Causeway's postmortem
display. Causeway's views integrate multiple orders. The
process and message-order views describe distributed
behavior, giving an overview of program execution by
showing how a set of events are related. The stack view and
source code view are familiar from sequential debugging.
They detail the internal structure of an event.

The views have been introduced in earlier sections. Here,
we describe an interactive sequence for a debugging
scenario. For concreteness, we introduce a bug into the
simple purchase order program described in Section 2.1.
Event promotion (Section 4.1) is enabled; event filtering
(Section 4.2) is disabled.

The problem, as reported, is that an order was placed for a
customer with bad credit. The search begins with the buyer
process since it implements the controls for order
processing. To see all events logged by the buyer process,
select the buyer tab in the process-order view. This is the
top, leftmost view in the interaction sequence described by

Figure 16. Here we see a tree of events, in chronological
order, for the buyer process.

The sequence of events shown seems to describe correct
behavior: three responses to queries were received and the
order was placed. But the order should not have been
placed, so the next question is what led to the comment
event, logging that the order had been placed. Select that
event ❶ to get more information. Selection is synchronized
across views, so the corresponding event is automatically
selected in the message-order view ❷. Here we see the
order in which events caused other events by sending
messages. Message order is reflected in the outline
structure; nested events were caused by the parent event.
Message flow is followed across process boundaries.
Causeway assigns each process a color so we can see when
message order crosses process boundaries.

Scanning up the message tree, the happened: all true
comment catches the eye. As explained in Section 4.1, this
indicates that all conditions were met. To investigate this
further, select its cause ❸. The corresponding event is
selected in the process-order view ❹ and this looks odd –
the order was placed after the second response rather than

Figure 15. Causeway User Interface

the third. To dig deeper, expand the tree ❺. Now, to focus
on a particular event, attention shifts to the stack view.

The top entry in the stack view is the currently selected
event in the message-order view. Subsequent entries are
built by following message order back in time to sending
events. The two levels together show the path back through
activation order. Expand the tree and select a message ❻ to
see the corresponding source code in the source view.

We see that AsyncAnd is incorrectly instantiated to expect
two answers, rather than three. The bug was not specific to
the credit check, as initially thought. Whichever response
happened to be received last, would be ignored.

Causeway is not a sequential debugger and the sequence
described did not lead directly to the bug. Our purpose is to
give a sense of the facility of moving between the process

and message-order views to fathom the behavior of a
distributed program. By showing how a set of events are
related, these views give an overview of program
execution. When focus shifts to a particular event, the stack
view and source view give the event details.

Notice that synchronized selection between the process-
order and message-order views is useful since, taken
together, they convey the equivalent of Lamport diagrams
(Figure 1).

6. Related Work
Debuggers can be categorized by their primary purpose and
by the particular support they provide. Is a debugger used
for understanding behavior for correctness or for
performance analysis? Is it primarily for development
debugging or production debugging? Distributed or

Figure 16. Hunting for a Bug

sequential? Runtime or postmortem? Is it extensible? Does
it support crossing various boundaries, such as user-kernel,
component layers, or machine boundaries.

Causeway is a distributed, postmortem debugger used to
understand program behavior for correctness, primarily
during development and testing.

Postmortem debugging involves generating trace logs,
collecting logged information, post-processing logs to
extract relevant information, and the presentation of the
resulting picture of the traced computation.

6.1 Generating Traces
Causeway's trace logs are so voluminous that their
generation can affect system behavior. For debugging
correctness issues during development, this cost is
affordable. But debuggers aimed at production or
performance analysis must do better.

DTrace [23] is an example of an engineering effort
attempting to solve these problems. DTrace is a dynamic
instrumentation framework integrated into the Solaris
operating system. It is designed for performance analysis of
both user and kernel-level software running on production
systems. It supports user-controlled instrumentation that
can be enabled and disabled dynamically. Users of DTrace
can express front-line filters – filtering logic that runs at the
point of trace generation – using DTrace's specialized
programming language, D. Amoeba [25] similarly supports
complex front-line filters to discard irrelevant trace records.
Unlike DTrace, Amoeba supports distributed debugging.

Causeway's stack-frame filtering currently happens only
during post-processing. When the programmer is confident
enough in their lack of interest in some code, they could
assign that portion of the filtering task to front-line filters
supported directly by the logging system. Neither
Causeway nor Waterken currently support this option. For
stack frames suppressed by front-line filters, there would be
no option to retroactively reveal them as the information is
already lost.

6.2 Collecting Traces
Distributed systems face inescapable problems – partition,
crash-revival of individual processes and servers, the
participation of non-instrumented components, and the
issues that arise when computing across administrative and
trust boundaries. These problems can cause difficult bugs
and they can also interfere with debugging. Each can
prevent access to some log records. To tolerate partial logs,
Causeway presents those causal relationships that it can
derive from whatever logs are available. But this derivation
is simplified by Causeway's assumption that all causality of
interest is described in terms of the communicating event
loops model.

X-Trace [24] is a dynamic, integrated tracing framework
that gives a comprehensive view of the behavior of
distributed components across layers and machines. The

actual paths taken by data messages are traced across
devices and layers. The construction of a complete task tree
requires modification to clients, servers and network
devices to propagate tracing metadata and to log reports.
Like Causeway, X-Trace is tolerant of partial logs, though
its reconstruction task is more challenging.

6.3 Extracting Relevance from Traces
Millipede [37] and IDLI [35] are built to support multilevel
debugging, integrating the sequential view of conventional
debuggers with support for message level and protocol
level debugging. Causeway has no analog of their protocol
level debugging, which attempts to determine whether
logged messages conform to or violate a protocol
specification. In Millipede and IDLI, log records are
collected into a relational database. For those questions that
can be formulated as database queries, this strategy can
provide efficient answers even from voluminous logs.

Amoeba performs post-processing event abstraction using
customizable recognizers – state machines matching
meaningful patterns of events [25]. Only these abstract
events are then presented by Amoeba's user interface.

Whereas Amoeba and Causeway only abstract events as
directed by the user, Kunz enhanced the Poet debugger to
“derive suitable abstraction hierarchies automatically.” [20]
Kunz constrains these automatically discovered
abstractions to satisfy his convexity constraint, which is
best explained by counter-example. If concrete event X
happened before event Y, and Y happened before Z, then an
abstract event A which aggregates X and Z but not Y would
not be convex, since part of A happens before Y and Y
happens before another part of A. By forbidding such non-
convex abstract events, the resulting graph of abstract
events can still be presented simply.

For communicating event loops systems, Kunz's convexity
rule is safe but too conservative. If an inconsequential turn
happened to occur in our example buyer process
interleaved between two calls to teller, the convexity
constraint would prevent the aggregation explained in
Section 4.3. Instead, Causeway's aggregation algorithm
only preserves Kunz convexity regarding message order
taken by itself. This contrast demonstrates well why
message order is generally more informative for reasoning
about communicating event loops.

6.4 Presenting Traced Computation
Distributed debuggers invariably emphasize process order
in their presentation of distributed computation. In [37]
Kunz further enhances Poet to recognize logged brackets.
As with Causeway's logged comments, these brackets were
emitted by the program based on directives inserted by the
programmer. Kunz provides an interactive visualization for
forming abstract events by bracketing intervals along
multiple parallel process order timelines.

While useful for Kunz's problem domain, this process order
bracketing is inappropriate for communicating event loops.
An independent turn that happens to interleave between
two brackets must again prevent abstraction to avoid
inclusion in the aggregate. The repeating event patterns
needing abstraction are only stable when viewed in
message order. Their interleaving with other events in
process order is generally noise that should not inhibit
abstraction.

Most distributed debuggers debug only the message level,
seeing each sequential process as a black box [40] to debug
using separate sequential debuggers. The dominant
debugger for the browser side of web development, Firebug
[39], does include both a conventional sequential debugger
and some support for tracking AJAX messages. However,
these two levels remain unintegrated. Firebug shows the
request and reply headers for an AJAX message but does
not capture the stack at the point of the AJAX call.

Sequential debuggers provide an integrated view of a
program's sequential control flow together with access to its
data state. Eclipse Step Filters [26] allow selective filtering
of user and system-level code, and inspired Causeway's
approach to source-based filtering.

Although Causeway does provide integrated views across
both sequential and distributed control flow, Causeway
provides no view of data state. To examine past data states,
IDLI [35] logs enough information to deterministically
replay individual processes, to provide the data access
familiar from live debuggers, and do so for past states.

Waterken application are programmed in Joe-E, a
deterministic subset of Java [36]. Were Causeway's logs
enhanced to capture the additional information needed, Joe-
E programs could be reliably replayed, perhaps using an
enhanced Waterken server as a replay harness. However, a
substantial engineering effort would be required to make
this practical.

7. Discussion and Future Work
Communicating event loops present both benefits and new
challenges for distributed debugging. Since each process is
a sequential program sending only asynchronous messages,
each program implicitly has mutually-exclusive access to
all state to which it has synchronous access, so memory
races are avoided without locking. Without locks or a
blocking receive operation, conventional deadlock cannot
occur. Most concurrency patterns can be implemented
without concern for the bugs that plague multi-threaded
programs. Debugging is simplified, as is the job of the
debugger. However, less conventional race conditions and
liveness bugs remain.

In Section 5 we saw a distributed consistency bug. Whether
this bug manifests on a given run depends on a race
condition – whether the bad credit report arrives before or
after the second success. As we've seen, to track down a

consistency bug, a good strategy is to start with an outcome
that shouldn't have happened and look backward.

The AsyncAnd program presented in Section 2 contains an
easily missed liveness bug: If the number of expected
responses is zero, AsyncAnd should promptly report success.
Instead, it fails to ever call its callback. When the
discrepancy is that something never happens, there's no
natural starting point from which to search backward. To
track down a liveness bug, it usually works best to use the
message view forward – to expand those branches along
the path that should have led to the absent outcome, to see
where it dead ends.

7.1 Methodology
Research on debuggers faces a methodological issue. Bugs
purposely created in order to examine, such as our two
AsyncAnd examples, are rarely realistic. Realistic
undiagnosed bugs are typically encountered under
pressures to get a program working rather than improve a
debugger, so lessons learned are not recorded. Our
experiences to date with Causeway bear this out.

• An early Causeway prototype built by Monica
Anderson at Electric Communities helped us
debug a massive distributed graphical virtual
world [19]. Our memories of this experience are
positive, but due to startup company pressures, we
made no record of how this prototype did and did
not help.

• To design the current Causeway user interface, we
started with trace logs generated by running the E
language's distributed command line loop. While
hand simulating the visualization Causeway would
generate from these logs, we easily found a bug
that had resisted several earlier attempts at
diagnosis [19].

• Next was the DonutLab challenge to build a
complex distributed system over a weekend [33].
We did not have time to waste on bugs. With
Causeway's help, we didn't. But again, due to time
pressure, we made no detailed record.

As of this writing, a development project at HP Labs,
ScoopFS [34], has a bug that manifests only when at least
eleven server processes are involved. Though reproducible,
this bug has eluded diagnosis for months. ScoopFS server
processes are being upgraded to work on the version of
Waterken/Joe-E instrumented to emit Causeway's trace
logs. ScoopFS clients are currently programmed in
ActionScript but will be converted to JavaScript. As we
employ Causeway to search for this bug, we will record our
experiences.

7.2 Future Work
If postmortem examination of ScoopFS server logs proves
insufficient, several next steps are plausible. Once the

ScoopFS client is converted to JavaScript, instrumenting
JavaScript in the browser to emit Causeway's logs will give
us an integrated view of client-server interactions.

As mentioned in Section 6.4, we could jointly extend
Causeway and Waterken to provide for instant replay of
logged Joe-E computations, in order to provide access to
past data states.

Our displeasure with process order is partially due to
treating a process as a single undifferentiated mass of state
– where any state change may affect any later turn in that
process. With past data states available, we may be able to
present a finer-grained view. For example, if two
consecutive turns read and write only disjoint portions of
their process' state, then it cannot matter which happened
first in process order. Recognizing such independence
would allow us to view process order as a partial order,
enabling us to eliminate yet more events as irrelevant to a
given bug.

Production systems present scaling problems. We do not
know the practical scaling limits of Causeway, but suspect
it is fairly small. We designed Causeway while thinking in
terms of tens of processes, not hundreds or thousands. As
use expands, we hope to understand this issue better.

8. Conclusions

The popularity of AJAX has introduced the difficult task of
debugging distributed asynchronous programs to the
mainstream programmer. Due to the nature of JavaScript in
the browser, these programs execute as communicating
event loops. This paper introduced Causeway, a
postmortem debugger for distributed systems built on the
communicating event loops concurrency model.

Causeway's novel message-oriented approach supports
navigating the structure of distributed causality across
process and machine boundaries. Its integrated views
describe both distributed and sequential computation. We
demonstrated how Causeway facilitates the search for
consistency and liveness bugs, and discussed how users
customize Causeway's event abstraction to hide detail
currently considered irrelevant.

Causeway is open source and included in the latest version
of E, available via subversion at
http://erights.org/download/. Causeway recognizes a
language neutral trace log format defined at
http://waterken.sourceforge.net/debug/.

Acknowledgements
We thank E. Dean Tribble and Chris Hibbert for the initial
ideas that led to Causeway, Monica Anderson for
implementing an early Causeway prototype at Electric
Communities, and Ka-Ping Yee for Figure 9 depicting the
state of an event loop process.

We thank Jasvir Nagra, Mike Samuel, Toby Murray, Tom
Van Cutsem, Alan Karp, and David-Sarah Hopwood for
comments on earlier drafts of this paper.

References
[1] Johnson, L. W. Intention-Based Diagnosis of Novice

Programming Errors. Research Notes in Artificial
Intelligence. Morgan Kaufman. (1986).

[2] Waterken Server Documentation.
http://waterken.sourceforge.net/

[3] Debugging a Waterken Application.
http://waterken.sourceforge.net/debug/

[4] HTML5 postMessage.
http://www.whatwg.org/specs/web-apps/current-work/
multipage/comms.html#crossDocumentMessages

[5] Web Workers.
http://www.whatwg.org/specs/web-workers/current-
work/

[6] XMLHttpRequest Level 2.
http://www.w3.org/TR/XMLHttpRequest2/

[7] XDomainRequest Object.
http://msdn.microsoft.com/en-
us/library/cc288060(VS.85).aspx

[8] Smith, David. Croquet Programming: A Concise
Guide. Qwaq and Viewpoints Research Institute, 2006.

[9] John K. Ousterhout, 1994. Tcl and the Tk Toolkit.
Addison-Wesley, Reading, MA, USA.

[10] Welsh, M., Culler, D., and Brewer, E. 2001. SEDA: an
architecture for well-conditioned, scalable internet
services. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (Banff,
Alberta, Canada, October 21 - 24, 2001). SOSP '01.
ACM, New York, NY, 230-243.

[11] David Mazières. A toolkit for user-level file systems.
In Proceedings of the 2001 USENIX Technical
Conference. pages 261-274, June, 2001.

[12] Kinder, K. 2005. Event-driven programming with
Twisted and Python. Linux J. 2005, 131 (Mar. 2005),
6.

[13] Bracha, G. and Ahe, P. and Bykov, V. and Kashai, Y.
and Miranda, E., The Newspeak Programming
Platform.

[14] Mark S. Miller. “Robust Composition: Towards a
Unied Approach to Access Control and Concurrency
Control.” PhD thesis, Johns Hopkins University,
Baltimore, Maryland, USA, May 2006.

[15] AsyncObjects Framework.
http://asyncobjects.sourceforge.net/

http://erights.org/download/
http://asyncobjects.sourceforge.net/
http://msdn.microsoft.com/en-us/library/cc288060(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc288060(VS.85).aspx
http://www.w3.org/TR/XMLHttpRequest2/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html#crossDocumentMessages
http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html#crossDocumentMessages
http://waterken.sourceforge.net/debug/
http://waterken.sourceforge.net/debug/
http://waterken.sourceforge.net/
http://waterken.sourceforge.net/debug/

[16] Dedecker J., Van Cutsem T., Mostinckx S., D'Hondt T.,
De Meuter W. Ambient-oriented Programming in
AmbientTalk. In “Proceedings of the 20th European
Conference on Object-Oriented Programming
(ECOOP), Dave Thomas (Ed.), Lecture Notes in
Computer Science Vol. 4067, pp. 230-254, Springer-
Verlag.”, 2006.

[17] Miller, M. S., Tribble, E. D. and Shapiro, J.
Concurrency Among Strangers: Programming in E as
Plan Coordination. In Trustworthy Global Computing,
International Symposium (TGC ’05) (Edinburgh, UK,
April 7-9, 2005). Springer Berlin / Heidelberg, 2005,
195-229.

[18] Lamport, L. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the ACM,
Operating Systems, 21, 7 (Jul. 1978), 558-565.

[19] Tribble, Distributed Space-Time Debugging
http://www.eros-os.org/pipermail/e-lang/2002-
November/007811.html

[20] Kunz, T. Visualizing Abstract Events. In Proceedings
of the 1994 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON '94),
page 38, Oct. 1994.

[21] Hewitt, C., Baker, H. Laws for Communicating
Parallel Processes. In 1977 IFIP Congress Proceedings,
1977.

[22] Mettler, A. M., Wagner, D. The Joe-E Language
Specification. Technical Report UCB/EECS-2006-26,
EECS Department, University of California, Berkeley,
March 17 2006.

[23] Cantrill, B. M., Shapiro, M. W. and Leventhal, A. H.
Dynamic Instrumentation of Production Systems.
Proceedings of the General Track: 2004 USENIX
Annual Technical Conference (June 2004).

[24] Fonseca, R., Porter, G., Katz, R. H., Shenker, S. and
Stoica, I. X-Trace: A Pervasive Network Tracing
Framework.

[25] Elshoff, I. J. P. A Distributed Debugger for Amoeba.
ACM SIGPLAN Notices, 24, 1 (Jan. 1989), 1-10.
Special issue: Proceedings of the 1988 ACM
SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging.

[26] Debugging with Eclipse Step Filters.
http://www.eclipsezone.com/eclipse/forums/t83338.rht
ml

[27] Armstrong, J. Making Reliable Distributed Systems in
the Presence of Software Errors. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden,
November 27 2003.

[28] Hoare, C. A. R. Communicating Sequential Processes.
Communications of the ACM, 21(8):666–677, 1978.

[29] M Snir, SW Otto, DW Walker, J Dongarra, S Huss,
MPI: The complete reference, 1995 - MIT Press
Cambridge, MA, USA.

[30] Milner, R., Communicating and mobile systems: the pi
calculus, Cambridge University Press, 1999.

[31] Kunz, T. and Seuren, M. F. H. Fast Detection of
Communication Patterns in Distributed Executions. In
Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research
(CASCON '97), page 12, Nov. 1997.

[32] Garrett, J.J. and others, Ajax: A new approach to web
applications, Adaptive path, 2005.

[33] Marc Stiegler, Mark S. Miller, Terry Stanley; “72
Hours to DonutLab: A PlanetLab with No Center”;
Tech Report; Hewlett-Packard Laboratories; 2004.

[34] Karp, Alan H.; Stiegler, Marc; Close, Tyler, Not One
Click for Security, HP Laboratories Tech Report HPL-
2009-53.

[35] Basu, H. and Pedersen, J. B. IDLI: An Interactive
Message Debugger for Parallel Programs Using LAM-
MPI. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications (PDPTA '06), Las Vegas, Nevada, USA,
pages 513-520, June 2006.

[36] Finifter, M., Mettler, A., Sastry, N., and Wagner, D.
2008. Verifiable functional purity in java. In
Proceedings of the 15th ACM Conference on
Computer and Communications Security (Alexandria,
Virginia, USA, October 27 - 31, 2008). CCS '08. ACM,
New York, NY, 161-174.

[37] Tribou, E. H. and Pedersen, J. B. Millipede: A
Multilevel Debugging Environment for Distributed
Systems. Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applicaitons (PDPTA'05) Las Vegas, Nevada, USA,
pages 187-193, June 2005.

[38] Hauswirth, M., Diwan, A., Sweeney, P. F. and Mozer,
M. C. Automating Vertical Profiling. In Proceedings of
the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems and
Languages (OOPSLA), pages 281–296, Oct. 2005.

[39] Lerner, R. 2007. At the Forge: Firebug. Linux J. 2007,
157 (May. 2007), 8.

[40] Cheung, W. H., Black, J. P. and Manning, E. A
Framework for Distributed Debugging. IEEE
Software, 7, 1 (Jan. 1990), 106-115.

http://www.eclipsezone.com/eclipse/forums/t83338.rhtml
http://www.eclipsezone.com/eclipse/forums/t83338.rhtml
http://www.eros-os.org/pipermail/e-lang/2002-November/007811.html
http://www.eros-os.org/pipermail/e-lang/2002-November/007811.html

	Abstract
	1. Introduction
	2. Distributed Causality
	2.1 A Distributed Asynchronous Example
	2.2 Sequential Debugging Revisited
	2.3 Message-based Causality

	3. Communicating Event Loops
	4. Event Abstraction
	4.1 Event Promotion
	4.2 Event Filtering
	4.3 Event Aggregation

	5. Causeway Viewer
	6. Related Work
	6.1 Generating Traces
	6.2 Collecting Traces
	6.3 Extracting Relevance from Traces
	6.4 Presenting Traced Computation

	7. Discussion and Future Work
	7.1 Methodology
	7.2 Future Work

	8. Conclusions
	Acknowledgements
	References

