CHAPTER 1

The E Kernel Language
Reference Manual

The E language is specified in layers. At the bottom is the E kernel language. The
kernel language is a subset of the regular E language -- every program written in
Kernel E is also a valid E program with the same meaning. The remainder of E’s
grammar outside the kernel subset is E’s sugarTseee Language Grammer

The semantics of the sugar is defined by canonical expansion to Kernel E. This
expansion happens during parsing -- E parse trees only contain nodes defined by
Kernel E -- so only these are executed by the virtual machine.

To give a semantics of Kernel E it suffices to write an executable specification of
the virtual machine as an interpreter of such parse trees. Following a venerable tail-
biting tradition, this chapter presents such an interpreter written in the full E lan-
guage. (An interpreter written in the same language it interprets is clletha
Interpreter)

Unfortunately, this does cause some circular-definition ambiguity. In Brian Smith's
terminology[?], the interpretetbsorbssome issues by mapping them onto the

same issues in the language in which the interpreter is written. When these are the
same languages, this leaves some issues unresolved. For the moment, we resolve
these ambiguities only informally in the text. The bootstrap E interpreter is essen-
tially a transliteration into Java of the interpreter presented here.

The E Language Reference Manual 1

The E Kernel Language Reference Manual

Since this chapter is not concerned about surface syntax, the BNF statements of the
kernel productions leave out non-structural grammatical detail, such as issues of
precedence and associativity. Jéw E Language Gramméar these.

The E Language Reference Manual

E Kernel Language Quick Reference Card

E Kernel Language Quick Reference Card

In the pseudo-BNF used hefierminals(tokens emitted by the lexer) are either
quoted bold-faced strings, or are names that begin with an upper-caseNetter.
terminals(forms defined by this grammar) are names that begin with a lower-case
letter. A question mark suffix on a form means the appearance of the form is
optional. An asterisk suffix means zero or more repetitions of that form. If the
asterisk is immediately followed by a punctuation character, these repetitions are
separatedoy that puntuation character.

Helper Productions

verb: Identifier
method: “to” verb “(” pattern*, “)” “{"
expr
[13 } ”
matcher: “match” pattern “{“
expr
[13 } ”
pattern: any of the following
param: definer | dgnore
definer: Identifier “:” expr
ighore: “_r
suchThat: pattern “?” expr
tuple: “[” pattern®, “]” “+” pattern

The E Language Reference Manual 3

The E Kernel Language Reference Manual

expr:

Titeral:

noun:
slot:
assign:
sequence:
call:
send:
matchBind:
init:

methodical:

plumbing:

scope:
throw:
escape:
compound:
Toop:

if:

try:

any of the following

BigIntegerLiteral | DoublelLiteral
| stringLiteral | CharLiteral

Identifier
“&” noun
houn “:=" expr
expr “;” expr
expr verb “(” expr¥*, “)”
expr “<-" verb “(’ expr*, “)”
expr “=~" pattern
“define” pattern “:=" expr
“define” param “{”
method*
matcher?
“y

“define” param matcher

“scope”

“throw” expr

“escape” param “{” expr “}”
“{” expr “}”

“Toop” “{” expr “}”

“Sf7 4 expr “)” “{”

expr

“1” “else” “{”
expr

“y

“ppy? S g
expr

“}” (“catch” pattern “{”
expr

“37)? (“finally” “{“
expr

“1)?

The E Language Reference Manual

Meta-Interpreter Setup

Meta-Interpreter Setup

Specification by Meta-Interpreter Enhancement

Defining a computational model that deals with security, upgrade, and debugging in
one step is too hard. Rather, we take it in stages. There is a danger of losing secu-
rity when introducing support for either upgrade or debugging, so we first present -

- as the contents of this chapter -- a meta-interpreter for a secure but non-upgrad-
able, non-debuggable E. In Brian Smith terminology, this meta-interpreter reifies
evalbut absorbapplyand capability security. (** need to explain this! **) As a
result, interpreted subworlds can work transparently with non-interpreted con-

texts. Indeed, this is the basis for the transparent inter-operation of Java and E
objects.

This enables us to define upgrade and debugging support as enhanced meta-inter-
preters, such that we can design and understand the resulting security properties. A
real implementation can then provide the behavioral equivaleitoafing (not

requiring) code to be run under such an enhanced interpreter. This clearly contin-
ues to be a faithful and secure implementation of the semantics specified by the
unenhanced interpreter, since one could have run the enhanced interpreter on top of
it.

The resulting enhanced interpreter gives us clear answers to the “who is allowed to
do-or-see what?” issues needed for debugging securely. Basically, the instantiator
of an interpreted subworld holds the only debugging capabilities to that world. For
anyone else to have debugging access, they must get it from the interpreter-starter.
However, the interpreter-starter can only obtain a debugger’s-eye-view on an object
if they also have the object. Not surprisingly, this follows KeyKOS discipline

rather well. Ironically, these same debugging hooks also enhance security, by pro-
viding us a discretion check enabling confinement. (** explain & refer somewhere

**)

The E Language Reference Manual 5

The E Kernel Language Reference Manual

Name Spaces

1. Keywordsare reserved for use by the grammar, and eventually, perhaps by user-
defined macros (syntactic extensions). Each keyword is its own Terminal type,
and these are not identifiers. Some keywords are reserved for future use.

2. Nounsare E’s term for variable names, since they are a way to retfeings
Every use-occurence of a variable nameri@an, and corresponds to a defin-
ing-occurence -- odef1iner -- of the same name. The rules for matching
noun todefiner are purely static.

In the kernel language, each use-occurence statically corresponds to exactly one
defining-occurence by a simple rule: the scope of a definer extends textually
left-to-right from the point of its definition until the corresponding close curly,
except where it is shadowed by an inner definition of the same name. However,
the definition ofcorrespondings a bit tricky. (E’s syntactic sugar usually fol-

lows the same rule, with the exception of the for-loop and conditional-or
expressions.)

3. Verbsare E’s terms for method or selector names, since they are a way to
requeshctions The defining-occurence appears in a method definition, and the
use-occurence occurs in a call or send expression. The correspondence between
the two is many-to-many and not statically determinable.

4. Behavior-namesFor all the elegance of anonymous closures, to my knowledge
no existing systems upgrade old instances of these to behave according to new
versions of their code. By contrast, behavior-names in E’s object and plumbing
expressiongnable such upgrades. Behavior names are composed from definers
according to the rules idpgrading Behaviors

The following meta-circular interpreter ignores upgrade and debugging-support
issues. Without these issues,

define foo { ... }
is equivalent to

define foo := define _{ ... }

since the remaining significancefob is only as alefiner

Meta-Interpreter Skeleton: Evaluation

As with the Lambda Calculus and related languages (most notably Scheme), the
heart of computation within an object is #aaluationof anexpressiorin a lexical
scope E's expressions are exactly those kernel parse node types defined by the

The E Language Reference Manual

Meta-Interpreter Setup

expr production above. In the Lambda Calculus, a scope is an immutable map-
ping from names (in Boun$ to values. In the non-debuggable, non-upgradable E
presented here, a scope is also an immutable mapping from nouns to values, but
these values are termelbts since they are expected to hold a variable’s value.

Slots are similar téocationsin Scheme’s semantics, except that the E programmer
can bind whatever object they want to be a noun'’s slot, and can obtain the slot of an
in-scope noun. A primitive mutable slot type is available -- and used by default in
the expansion of the sugar language -- enabling classic side effects by assignment.

So altogether, we have four distinct indirections to get from a variable name to the
object it designates:

1. Static Correspondence
expr: noun -> pattern: definer
The statically analyzable correspondence between use-occurences of a variable
names (noun expressions) and a defining occurence of the same name (a definer
pattern). In the kernel language, this strictly follows the left-to-right definer to
corresponding close curly rule. The interpreter presented below makes less use
of this static analyzability than it probably should, instead managing scopes
carefully so that the run-time name/scope uniqueness exactly matches the static
correspondence rule.

2. Lexical Loopup
scope[identifier] -> slot
A scope is an immutable mapping from names to slots. Each time an expression
is evaluated, a distinct scope is provided, so it will often look up a distinct slot.
For example, the equivalent of object’s instance variable storage is a scope allo-
cated per-instance that maps instance variable names to slots holding the values.
(Note that E has no distinct notion of instance variables. The effect described is
an outcome of the semantics presented here.)

3. Mutable State
slot getvalue -> reference #reading a variable’s value
slot setvalue(expr) # assignment
When a variable name is used in a noun expression (as other than the left-side of
an assignment), this turns into a slot lookup as described above, followed by
asking that slot for its current value. Assignment is turned into a request to the
slot to change its value. AJot-expression skips step three, and just returns
the slot itself as the value of the expression. Variableagrprecisely because
slots can change their value over time.

4. Designation
object reference -> object
The value returned by step 3 shouldn’t be thought of as the object itself, but as a

The E Language Reference Manual 7

The E Kernel Language Reference Manual

reference (or pointer, or capability) to the object. When drawing a heap of
objects, we typically depict the objects themselves as circles or blobs, and
objects references as arrows. If object Apoénts atobject Bob, then Alice

holds the tail of an arrow whose head is attached to Bob. Since E is a distibuted
language, we give these arrows more semantics than usual: in particular, Alice
and Bob can be on different machines, in which case the reference will span
machines. SucBEFERREDreferences have a restricted semantics that reflect
the inescapable difficulties of distributed computing -- like partial failure. This

is documented fully in thE Reference Mechanics

In Lambda Calculus, expression evaluation takes in an expression and a scope, and
produces a value. In E, expression evaluation similarly takes in an expression and a
scope, but produces an outcome. The three forms of outcome are

1. Success, in which case eval returns a pair of a resulting value and a resulting
scope. The resulting scope is a superset of the input scope, but possibly contain-
ing further bindings. (** need to specify shadowing rules **)

2. Failure, in which case eval throws an object astteeptionindicating what
problem occured. Searow andtry/catch/finallybelow.

3. Escape, as documented in the semantiescépebelow. Bothfailure and
escapeare forms ofhon-local exit

The following meta-interpreter absorbs the call-return stack discipline, so that
returning successfully in the interpreted language is represented by eval returning
successfully, and non-local exit in the interpreted language is represented by eval
performing a non-local exit.

The natural object-oriented way to define éwalfunction would be to distribute it

into a set obvalmethods defined on each expr-parse-node type. (Indeed, the boot-
strap interpreter written in Java does exactly this.) However, this has the wrong
extensibility property: we wish to hold the definition of the kernel language fixed
over long periods of time, while we also expect to define enhanced semantics for
executing E -- especially for debugging and upgrade -- by enhancing this inter-
preter. Therefore we need to enable multiple interpreters to co-exist in one system,
and to allow the others to be defined by incremental modifications to this one. To
do this, we write the interpreter as a simple function containing a big switch. Each
branch of the switch matches one of the expression types above, and is shown in the
corresponding section:

define eval(expr, scope) {
switch (expr) {

The E Language Reference Manual

Meta-Interpreter Setup

match e*..." {

Meta-Interpreter Skeleton: Pattern Matching

In Lambda Calculus, defining occurences of nouns only appear in parameter lists.
Most programming languages also have a variable declaration/definition construct
that can appear in a block of code. Where classically one has defining occurences
of variable names, E instead hmterns Where one classically binds a name to an
initial value -- by argument matching or initialization -- E instpattern matches

the pattern against the initial value. When the pattern is the expansion of a simple
Identifier, the effect is identical to the classical case. In other words, the classic
parameter variable declarations and local variable definitions are degenerate (but
common!) forms of E’s pattern matching mechanism.

As with evalwe define E’s pattern matching routinestMatch with a global func-

tion that dispatches (using EBsvitch on the type of the pattern. The Java imple-
mentation of the bootstrap interpreter instead distributes the clauses into the Pattern
parse-node types.

define testMatch(patt, scope, specimen) {
switch (patt) {

match e*..." {

}

}

ThetestMatchfunction takes in a Pattern parse-tree, a scope as the context in which
to perform the match, and a run-time value to match it against. The outcomes:

The E Language Reference Manual 9

The E Kernel Language Reference Manual

1. If the match is successfukstMatchreturns a one-element array containing a
scope derived from the imput scope, but also containing any bindings resulting
from the match.

2. If the match is unsuccessftstMatchreturnsnull

3. Various components of the match may perform a non-local exit (failure or
escape), in which casestMatchis so exited.

As you will see below, by returning a one-element array for the success case, rather
than just returning the result directly, we enable the usead¢hBindexpressions
in the interpreter to both test for success and bind the result in a compact fashion.

Miscellaneous Interpreter Functions

The mustMatchunction is liketestMatch except that an unsuccessful match
results in failure rather than returning null, and therefore a successful match can
just return the scope directly. fustMatchreturns, it will always return a scope.

define mustMatch(patt, scope, specimen) {
define [result] := testMatch(patt, scope, specimen)
result

}

Sometimes we need to introduce names into a scope before we have enough infor-
mation to bind them to Slots. In this case,regervethe names by binding them to
Promises for Slots, and then later resolve the forward reference by forwarding the
corresponding Resolvers.

define reserve(names, scope) {
define resolvers := TableEditorimpl()
for name in names {
define [prom, res] := Promise()
scope := scope with(name, prom)
resolvers[name] :=res

}

[resolvers snapshot, scope]

10

The E Language Reference Manual

Meta-Interpreter Setup

Given a pattern and a scopeservereserves all names this pattern would bind by
returning a pair of a mapping and a new scope. This new scope is derived from the
original by binding each name to a promise for a new slot. The mapping maps each
of these names to the corresponding Resolver.

define resolve(resolvers, scope) {
for name => res in resolvers {
res forward(scope[name])

}
}

Should the pattern whose bindings were reserved succeed at matehdaheggwill
resolve the previous reservations to the slots resulting from the successful match.

The E Language Reference Manual 11

The E Kernel Language Reference Manual

Defining Behaviors: Method & Matcher

Classically, an object is an encapsulated package of state and behavior, and E’s
semantics reflects this faithfully.

Objects are defined by thobjectexpressions, of which there are two kinds:
methodicalexpressions -- for defininmethodical objectsandplumbingexpres-

sions, for defining objects that act as message plumbing. An object expression
evaluates in a scope to an object that behaves as described by the object expression.
For example, the following program in the full E language

define Point(x, y) {

define self {
to getX {x}
to getY {y}
}

}

Sample command-line interaction in the context of the above definition:

? define pt := Point(3, 5)
? pt getX
value: 3

expands into the following Kernel E program:

define Point : mutable {
to run(x : final, y : final) {
define self : final {
to getX() {x}
to getY() {y}

}

? define pt : mutable := Point run(3, 5)
? pt getX()
value: 3

In the original program, it seems we’ve defirfeaint to be a function. In the
expansion, we see thBbintis actually an object with a singlen method that
takes two arguments. After all, kernel-E is a pure object language: all values are

12

The E Language Reference Manual

Defining Behaviors: Method & Matcher

objects, and all inter-object interaction (with the exception of equality) is purely by
message sending. However, E’s sugar streamlines the use of objects to express
conventional functional/procedural patterman is E’'s default verb. If left out, it

will be supplied in the expansion to the kernel language. An apparent function def-
inition actually defines an object withran method.

The behavior of Point’sun method is to define and return an object (nasafl

within the scope of theuin method, and therefore namselfto itself). Bybehav-

ior, we mean this is what Point does in responseua emessage of two arguments.
This returned object’s behavior is similarly described by two methods: getX and
getY. (Another tasty bit of sugar is that zero-argument argument lists may be left
out of both definition and call. However, you may not leave out both the verb and
the argument list.)

This returned object acts like a conventional point object, but where does the state
of the object come from? Somehowandy are acting like its classical instance
variables, but there doesn't seem to be anything special about their declaration.
Indeed there isn’'t. The scopexadindy extends from their definition until the close
curly at the end of theun method. Theelfobject expression within this scope can
therefore refer to these slots by using their names.

So thestate-noun®f an object expression are those nouns used within the object
expression thattatically correspondsee above) to noun definitions outside the

object expression. An object expression evaluates in a scope to an object. The
object’sstateis the subset of this scope containing the object expression’s state-
nouns. When an object receives a message, it executes a corresponding method o
matcher in a scope which is a child of this state.

Method Definition

method: “to” Vel"b u(u pattel"n* u)n u{u
expr

g

Method definitions only occur inside object expressions, and describe how the
resulting object responds to a message with the same verb and arity.

The E Language Reference Manual 13

The E Kernel Language Reference Manual

When an instance of an object expression receives a message whose name and arity
match one of its methods, that method is invoked in a child of the state captured
when the object was instantiated (when the object-expression was evaluated). The
sequence of arguments is first matched against the sequence of parameters. If this
doesn't succeed, an exception is thrown (even if the optional matcher has been pro-
vided). If this does succeed, the body expr is then evaluated in a child of the result-
ing scope, and the outcome of expr’s evaluation is the outcome of the invocation.

Evaluation Rule:

define doMethod(method, state, args) {
scope := state sprout
define patterns := method patterns
assert(args length == patterns length)
for iin O till(args length) {
scope := mustMatch(patterns]i], scope, argsli])
}
eval(method bodyExpr, scope)[0]

Matcher Definition

matcher: “match” pattern “{“
expr

g

A matcher describes an object’s “behavior of last resort”, ie, how it should respond
to a message when it has no method of the same verb and arity. In this case, the
matcher is invoked in a child of the lexical scope captured on instantiating the
object. The message is turned into a pair (a two-element sequence) and matched
against the pattern. If this fails an exception is thrown. If this succeeds, the body
expr is evaluated in a child of the scope resulting from the match, and the outcome
is the outcome of the invocation.

Evaluation Rule:

define doMatcher(matcher, state, message) {

14

The E Language Reference Manual

Defining Behaviors: Method & Matcher

scope := state sprout
scope := mustMatch(matcher pattern, scope, message)
eval(matcher bodyExpr, scope)[0]

The E Language Reference Manual

15

The E Kernel Language Reference Manual

Params & Patterns

Params are Patterns that define at most one variable.

The Definer Param

definer: Identifier “:” expr

Defines a new noun with the given name. The scope of this noun lasts left-to-right
from thedefiner until the corresponding close curly, except as shadowed by inner
blocks that define the same name. If we ignore for a moment what happens when
expruses the noun it is helping to define, we have the following simpler explana-
tion:

To match alefinerin a scope to a specimen, first evaluate expr in that scope. If
successful, this results in a returned value and a new descendent scope. The
returned value is assumed to b8latMaker. A SlotMaker is an object that
responds toanakeSlot(initialValuepy returning &lot A Slot is an object that
responds at least getValue(no arguments), and, if it representslatableSlot to
setValue(newValue)So we bind thédentifier to the result of sending
makeSlot(specimen) the presumed SlotMaker. The scope resulting from the
definer is the original scope enhanced both by this bindihdeatifier, and by any
bindings produced bgxpr.

The true explanation differs in the following ways:

Sinceexpris to the right ofdentifier, it is withinldentifier's scope. However, expr

must be evaluated before we can create the slot that the name designates. So the
name starts off bound to a promise for the slot. Within this new segpeis eval-

uated, potentially adding yet further bindings. Assuming expr evaluates success-
fully, we proceed to make a presumed Slot as above. This object then becomes the
resolution of the promise.

testMatch Rule:

match epatt‘@name : @expr‘ {
define [resolvers, scope?] := reserve([name], scope)
define [slotMaker, scope3] := eval(expr, scope2)

16

The E Language Reference Manual

Params & Patterns

define slot := slotMaker makeSlot(specimen)
resolve(resolvers, scope with(name, slot))
[scope3]

}

There are several well known SlotMakers, and compilers and discretion-checkers
will often have special knowledge of some of these. For example:

define mutable makeSlot(value) {
define slot {
to getValue {value}
to setValue(newValue) {
value := newValue

}
}

define final makeSlot(value) {
define slot getValue {value}

}

ThemutableSlotMaker makes a Slot that acts like our normal notion of an untyped
assignable (ienutablg variable, whereas tHaal SlotMaker makes a slot that
may be read but not changed.

By convention, a Type is a SlotMaker. In addition, a Type hamiahmethod for
vouching for instances of the Type, anfiral method to make SlotMaker that

makes final Slots. To E, all Java classes are Types, and respond according to the
following three methods:

to vouch(specimen) {
a small bit of implicit coercion magic can happen here.
See Thee-to-Java Binding Specification
if (self isinstance(specimen)) {
specimen
}else {
throw ... /lsome appropriate exception
}
}

to makeSlot(specimen) {
define value := self vouch(specimen)

The E Language Reference Manual 17

The E Kernel Language Reference Manual

define slot {
to getValue {value}
to setValue(newValue) {
value := self vouch(newValue)

}
}
}
to final {
define typedFinal makeSlot(specimen) {
define value := self vouch(specimen)
define slot getValue {value}
}
}

This allows types to constrain the possible values of variables in ways familiar from
statically typed languages, and in ways that enable similar compiler optimizations,
but all in term of a purely run-time semantics. For example:

define Character : final := load:java.lang.Character
define foo : Character := ...

foo:=c

Both human and compiler know thfab can only come to hold instances of Char-
acter. Ifcisn’t a Character, the assignment will fail (with a thrown exception) and
foowill be unaffected. By special dispensation, when the compiler can show that a
binding or assignment would always fail (even if it can’t show that it would ever be
executed), it may reject the program with a compile-time error.

So, for example, if we define a subrange type:

define subrange(start, bound) {
define self {
to vouch(specimen : Number final) {
if (start <= specimen && specimen < bound) {
specimen
}else {
throw ... /lsome appropriate exception

18 The E Language Reference Manual

Params & Patterns

to makeSlot(specimen) {
/las shown in Java class behavior above

}

to final {
/las shown in Java class behavior above

}

(An actual system would not have so much repetition of code patterns, but avoid it
well involves thanheritancepattern, which should not be introduced so soon.)

If we then declare
X : subrange(3, 5) ...

we know that in each resulting scope, x will be bound to a mutable slot that only
holds values between 3 (inclusive) and 5 (exclusive). On the other hand, if we
declare

. X :subrange(3, 5) final ...

then in each scope x will be bound to final slot whose initial and permanent value
will be in this range.

Doessubrange ’s vouch need to asklumber tovouch for specimen ? In order

for subrange to vouch forspecimen , it has to know thatpecimen will always

act like an integer within the specified range. Integers are just objects responding
to a protocol. An object acting like an integer may say it's less than 5 one moment,
and act like 6 another moment, so subrange itself needs assurance that it can trust
the consistency afpecimen ’'s behavior.

Finally, we can use the SlotMakeefineSloto use the specimen itself as a Slot:

define defineSlot makeSlot(specimen) { specimen }

The Ignore Param

ighore:

The E Language Reference Manual 19

The E Kernel Language Reference Manual

Matches any specimen, but binds nothing. Most commonly used for a parameter in
a method declaration when the method has no need for the corresponding argument.

testMatch Rule:

match epatt’_‘ {
[scope]

The SuchThat Pattern

suchThat: pattern “?” expr

A suchThat pattern matches a specimen iff the contained pattern matches the speci-
men, and in the context of the resulting bindings, the contained expr evaluates to
true. If the contained pattern doesn’t match, the contained expression isn't evalu-
ated.

testMatch Rule:

match epatt'‘@patt ? @expr' {
if (testMatch(patt, scope, specimen) =~ [scopeZ2]) {
define [ok, scope3] := eval(expr, scope2)
if (ok) { [scope3] }

}
Although it's arguably bad style, the above piece of code relies on the property that
anif-thenacts like (indeed, expands to) ikthen-elsein which the automatically

suppliedelseevaluates taull

This form is especially useful when you want to express pre-conditions on the call,
rather than constraints on the variables. (** need examples **)

20

The E Language Reference Manual

Params & Patterns

The Tuple Pattern
tuple: “[” pattern® “]” “4+” pattern

Matches a tuple iff

1. It has at least as many elements at the number of patterns between the brackets
2. Each such pattern matches the corresponding tuple element
3. The pattern after thet” matches the remainder of the tuple.

Execution proceeds left-to-right, and scope accumulates left-to-right, so each match
occurs in the context of all matches to its left. A failing match prevents any
matches to its right from being attempted.

testMatch Rule:

match epatt'[@patts...] + @restPatt’ {
define length := patts length
escape return {
if (length > specimen length) {
return(null)
}
for iin O till(length) {
if (testMatch(patts]i],scope, specimen(i]) =~ [s2]){
scope :=s2
}else {
return(null)
}
}
}

testMatch(restPatt, scope, specimen slice(length))

}

This allows patterns to extract values from nested tuple structures in ways familiar
to Prolog programmers. A silly example:

define car([x] + _) {x}
define cdr([_] +v) {y}

The E Language Reference Manual 21

The E Kernel Language Reference Manual

In practice, the main use of this is to obtain mutiple resturn values from a call, such
as our owreval function. Above, when we said

define [ok, scope2] := eval(expr, scope)

this expands to

define [ok, scope2] + _x ? _x ==[] := eval(expr, scope)
(all expansion-created temporary hames begin with an underscore)

On the righteval was returning a tuple (immutable array) of two elements. On
the left, the zero’th element of this array is matched against the zero’th pattern,
binding the noumk, and the one’th element is matched against the one’th pattern,
bindingscope2 . The remaining part of the tuple is matched agains? “x ==

[l " which only succeeds if the remaining part of the tuple is the empty tuple, ie, if
the original tuple was exactly two elements long.

22

The E Language Reference Manual

Expressions

Expressions

The Literal Expression

expr: BigIntegerLiteral | DoubleLiteral
| StringLiteral | CharLiteral

This simply evaluates to the described value. The syntax is as in Java, including
full Unicode support, but without a precision limit on integers.

Evaluation Rule:

match x ? x isa(LiteralExpr) {
[x getValue, scope]

}

Examples:

35

3.14159

“Hello world\n”
av

The Noun Expression

expr: noun

Evaluates to the current value of the variable, according to the Slot. If the name is
bound only to a DEFERRED reference to a Slot (typically a Promise for a not-yet-
resolved forward definition), then the Noun expression evaluates to a Promise for
an eventual value of the eventual Slot. (** The ordering weakness seems danger-
ous. Should it simply error instead? **)

The E Language Reference Manual 23

The E Kernel Language Reference Manual

Evaluation Rule:

match noun ? (noun isa(NounExpr)) {
define getValue(slot) {
if (E state(slot) == “DEFERRED”) {
slot <- getValue
}else {
slot getValue

}
}

[getValue(scope[noun name]), scope]

}

Rather than being in Kernel E, the noun production could have been defined by
expansion, as the noun

foo
is equivalent to the expression

(&foo) getValue

The Slot Expression
slot: “&” noun

Evaluates to the slot which holds the value of the variable.

Evaluation Rule:

match e‘&@noun’ {
[scope[noun name], scope]

}

This is used in the expansion of the conditional-and (&&) and conditional-or (||)
sweeteners, but its most intriguing use is for one-way eventual constraint expres-
sions:

define x : observableSlot := 3

24

The E Language Reference Manual

Expressions

define y : observableSlot := 5
define z : constrain := ever(&x) + ever(&y)

With the appropriate definitions @bservableSlot , constrain andever we can
read this asc¢onstrain z to always eventually be the sum of the latest values of x
and y. SeeLamport Slots and Constraint Programming

The Assignment Expression

expr: noun = expr

Changes the value of the variable to the new value. More precisely, asks the Slot
for this noun in the current scope to change its current value to the value of the
expression.

If the variable was declardithal , an implementation may (**must??**) reject
this statically rather than dynamically.

Evaluation Rule:

match e‘@leftNoun := @rightExpr* {
define slot := scope[leftNoun name]
define [result, scope?2] := eval(rightExpr, scope)
[slot setValue(result), scope2]

}

An example of multiple facets sharing common mutable slots:

define readWritePair(value) {
[define reader() { value },
define writer(newValue) { value := newValue }]

}

readWritePairreturns two function-objects that share common state: the slot
named “value”. Each time readWritePair is called, it returns a new pair of func-
tions that share a new Slot:

? define [r1,w1] := readWritePair(“foo”)
? define [r2,w2] := readWritePair(“fo0”)

The E Language Reference Manual 25

The E Kernel Language Reference Manual

? wil(*bar”)

? w2(*baz”)

?2rl()

value: bar
?2r2()

value: baz

Since the two objects in a pair provide different powers over shared state -- one can
only read and the other can only write -- we often refer to them ofavetsof

composite object defined by this state and all the behaviors that can operate on it.
Although it is often a useful way to speak, only the individual facets are actual
objects as far as E is concerned. This technique demonstrates that the power tradi-
tionally associated withapability bits-- to have different references to an object
convey different authorities -- is easily achived with nothing but pure objects. Dif-
ferent authority over common state is represented by access to different objects that
share that state. All references to the same object grant equal authority: the author-
ity to invoke any of its public methods.

In some sense, this is all implied by the early definitions of objects: Classically, we
say an object is a combination of state and behavior. Well, before objects there
were modules, which were a combination of file-scope global variables and proce-
dures that had them in scope. (Remember C’s file-static variables?) In going from
modules to classes, we changed the data a module could access to be multiply
instantiable. In other words, different instances of the same class attach the same
code with different data. The facet technique above shows the power of also attach-
ing different code to the same data.

The Sequence Expression

expr: expr “;” expr

Evaluates these in order. The resulting value is the value of the right-hand expres-
sion.

Evaluation Rule:

match e‘@leftExpr ; @rightExpr’ {
define [_, scope?] := eval(leftExpr, scope)

26

The E Language Reference Manual

Expressions

eval(rightExpr, scope2)

The Call Expression
expr: expr verb “(’ expr* “)”

First, the receiver expression and the argument expressions are evaluated in left-to-
right order. The receiver is then called synchronously with a message

1. whose verb is the stated verb
2. whose args are a tuple of the evaluation-results of the arg expressions
3. and whose continuation is the outcome of the call.

This is conventionallo-it-nowcall-return ordering, where the receiver returns

before the caller continues. Since the caller is blocked until the receiver returns, the
receiver must be in the same vat as the caller, ie, the receiver expression must eval
uate to a KEPT reference. Since both caller and receiver are in the same Vat, any
side effects made by the receiver to shared synchronous state must be seen by the
caller after the call.

Although it's not apparent in the current meta-interpreter, two forms of outcome

can be reported to the continuation: success -- reported by forwarding the continua-
tion to the resulting value, and exceptional -- reported by smashing the continuation
with the explanatory problem. (** update terminology and account for escape **)

Evaluation Rule:

match e‘@receiverExpr @verb (@argExprs...)" {
define [rec, scope?2] := eval(receiverExpr, scope)
define args =[]
for argExpr in argExprs {
define [arg, scope3] := eval(argExpr, scope2)
args += [arg]
scope?2 := scope3
}

[E call(rec, verb name, args), scope2]

The E Language Reference Manual 27

The E Kernel Language Reference Manual

The Send Expression

expr: expr “<-" verb “(’ expr* *)

First, the receiver expression and the argument expressions are evaluated in left-to-
right order. A new Promise is created, and we queue onto the receiver’s vat a pend-
ing delivery to the receiver of a message

1. whose verb is the stated verb
2. whose args are a tuple of the evaluation-results of the arg expressions
3. and whose continuation is the new Promise’s resolver.

The value of the send expression is immediately the acceptor of the new Promise,
and the sender immediately continues. This is E’s optimistic event-loop scheduling
primitive, where the sender continues without blocking, and the receiver receives
the message in a brand new event. Any side effect performed by the receiver can-
not affect the sender’s eventCHronological encapsulatign

Although it's not apparent in the current meta-interpreter, two forms of outcome
can be reported to the continuation: success -- reported by forwarding the resolver
to the resulting value, and exceptional -- reported by smashing the resolver with the
explanatory problem. (** update terminology and account for escape **)

Evaluation Rule:

match e‘@receiverExpr <- @verb (@argExprs...)' {
define [rec, scope?2] := eval(receiverExpr, scope)
define args =[]
for argExpr in argExprs {
define [arg, scope3] := eval(argExpr, scope2)
args += [arg]
scope?2 := scope3
}

[E send(rec, verb name, args), scope2]

28

The E Language Reference Manual

Expressions

The MatchBind Expression

expr: expr “=~" pattern

The expression is evaluated, and then matched against the pattern. The value is a
boolean reporting the outcome of the match.

Evaluation Rule:

match e‘@leftExpr =~ @patt’ {
define [specimen, scope2] = eval(leftExpr , scope)
if (testMatch(patt, scope2, specimen) =~ [scope3]) {
[true, scope3]
}else {
for name in expr namesOut {
scope := scope withBrokenBinding(name)

}

[false, scope]

The Definition Expression

expr: “define” pattern “:=" expr

We first reserve all the names defined by the pattern. Then we evalate the expres-
sion in the resulting scope, producing the specimen. We then match this with the
pattern. If this fails, we throw an exception. If this succeeds, the bindings pro-
duced by the match become the resolution of our reserved names, and the value of
the define expression is the specimen.

The reservation mechanism is to initially bind each name to a new Promise accep-
tor, and then to resolve the reservation by forwarding the corresponding resolver.
For you Lispers, this islatrec than works. Besides capturing such names on the
right side in object expressions, one may also asynchronously send it messages, anc
store it in data structures. The cleanliness of the E inheritance pattern depends on
the cleanliness of this definition.

The E Language Reference Manual 29

The E Kernel Language Reference Manual

Evaluation Rule:

match e‘define @patt := @rightExpr‘ {
define [rslvs, scope?2] := reserve(patt namesOut, scope)
define [specimen, scope3] := eval(rightExpr, scope2)
resolve(rslvs, mustMatch(patt, scope, specimen))
[specimen, scope3]

The Methodical Expression

methodical: “define” param “{”
method*
matcher?
“}H

An object expression evaluates to an object which iastanceof the object
expression, and this particular case of evaluation is also éadieshtiation

Debugging issues aside, the semantics of such an instance is fully described by four
attributes.

1. The object expression describes the behavior of its instance.

2. The object expression will often contain use-occurences of nouns (variable
names) whose defining occurence is outside the object-expression. For each
such name, the resulting variable in the instantiating context is captured by the
instance. The state of the instance consists of such variables.

3. Each instantiation endows the instance with a unique EQ-identity. E’s equality
tests will distinguish otherwise-equivalent instances on this basis.

4. Vat-host. E is a distributed language, so its semantics makes explicit that each
instance is somewhere. E’s notion of a place for an object to béats Bach
Vat hosts a number of objects, and all objects are hosted by exactly one Vat.

On receiving a message, an instance will first attempt to find a matching explicit
method (a method appearing in the object expression). Failing that, it will attempt
to find a matching Miranda method -- a set of standard methods provided for those
objects that don't provide overrides of their own. (This primitive form of inherit-
ance in the only kind directly supported by the E kernel.) Failing that, the message

30

The E Language Reference Manual

Expressions

is given to the matcher if any. If there isn’t any, the Miranda matcher is to throw a
NoSuchMethodException, describing the message that couldn't dispatch.

Evaluation Rule:

match e‘define @param { @methods... @optMatcher }' {
define [rslvs, scope?2] := reserve(param, scope)
define state := ... /Isubset of scope2 used freely in the behavior
define obj match [verb, args] {
escape return {
for meth in methods + mirandas {
if (verb == meth verb ...
&& args length == meth arity) {

return(doMethod(meth, state, args))
}

}
if (optMatcher != null) {

doMatch(optMatcher, state, [verb, args])

}else {
throw ... /lsome appropriate exception
}
}
}
resolve(rslvs, mustMatch(param, scope, obj))
[obj, scope2]

The Plumbing Expression
expr: “define” param matcher

A plumbing expression is much like a methodical expression with no methods,
except that no Miranda methods are provided either. This allows one to define
“message plumbing” -- objects that forward messages generically without dispatch-
ing on them.

The E Language Reference Manual 31

The E Kernel Language Reference Manual

Evaluation Rule:

match e‘define @param @m* ? (m isa(Matcher)) {
define [rslvs, scope?2] := reserve(param, scope)
define state := ... /Isubset of scope2 used freely in m
define obj match [verb, args] {
doMatch(m, state, [verb, args])
}
resolve(rslvs, mustMatch(param, scope, obj))
[obj, scope2]

The Scope Expression
expr: “scope”
Reifies the current lexical environment. This environment should contain slots for

exactly those variables whose definers are in scope, and, if they are defined outside
the current object or plumbing expression, are used freely by that expression.

Evaluation Rule:

match e‘scope’ {
[scope, scope]

}

The Throw Expression
expr: “throw” expr

Evaluates expr and smashes the continuation with the resulting problem. Evalua-
tion terminates outward through enclosing blocks, running theifinally

clauses, until a matchingtch -clause is found (or unless an interverfinglly

clause hijacks flow of control by initiating its own non-local termination). Should

32

The E Language Reference Manual

Expressions

evaluation terminate all the out to the event loop, the resolver of this event’s initiat-
ing message is smashed with the problem.

Evaluation Rule:

match e‘throw @problemExpr* {

define [problem, _] := eval(problemExpr, scope)
throw problem

The Escape Expression

expr: “escape” param “{”
expr

g

First, in a child of the current scoggramis bound to amscapeHatcliior exiting

the escape expression, and then expr is evaluated in the resulting scope. If the
escapeHatch is not invoked, expr completes normally, and its value is the value of
the escape expression. If the escapeHatch is called witigval) during the
evaluation of expr, expr terminates outward from that point (running intervening
finally clauses), until the escape expression is reached. The escape expression’s
value is then the argumentrion() . As a convenience, an escapeHatch also has a
no-argumentun() method that is equivalent ton(null)

Once an escape expression has completed, its escapeHatch is disabled.

Evaluation Rule:

match e‘escape @param { @bodyExpr }* {
escape hatch {
scope := mustMatch(param, hatch, scope sprout)
define [val, _] := eval(expr, scope)
[val, scope]

The E Language Reference Manual 33

The E Kernel Language Reference Manual

The Compound Expression

expr: B
expr

g

Provides a nested scope, so that definers in expr don't introduce names into the
enclosing conext.

Evaluation Rule:

match e'{ @bodyExpr }' {
define [val, _] := eval(bodyExpr, scope sprout)
[val, scope]

The Loop Expression

eXpr‘: II'Ioopll II{”
expr

g

Evaluates expr repeatedly, each time in a new child of the current scope. The loop
can only be exited by throws or escape hatches.

Evaluation Rule:

match e‘loop { @bodyExpr } {

loop {
eval(bodyExpr, scope sprout)

}

34

The E Language Reference Manual

Expressions

The If Expression

expr: “9F7 “C" expr)7 *“{”
expr
“1” “else” “{”
expr
“3r

In a child of the current scope, evaluates the condition to a boolean. If true, evalu-
ates the then expression in the context of the resulting bindings, and the result is the
value of the if expression. If false, evaluates the else expression in a new child of
the original scope, and the result is the value of the if expression.

Evaluation Rule:

match e‘if (@cond) {@then} else {@els}* {
define [ok, scope2] := eval(cond, scope sprout)
define [val, _] :=if (0k) {
eval(then, scope2)
}else {
eval(els, scope sprout)

}

[val, scope]

The Try-Catch-Finally Expression

expr: “try” “{”
expr
“}” (“catch” pattern “{”
expr
“37)? (“finally” “{“
expr

“1)?

The E Language Reference Manual 35

The E Kernel Language Reference Manual

In a child of the current scope, evaluate the first expr. If it completes normally, in a
new child of the original scope, evaluate thelly ~ expr if any, and the outcome

of try expr is the outcome of the first expr, unless hijacked byirthity

expression.

If expr terminates by throwing (ie, by smashing its continuation), in a new child of
the original scope attempt to match the problem witledleh clause’s pattern. If

it matches, run theatch expression in the context of the resulting bindings. Then
evaluate thdinally clause as above. The outcome oftthe expression is the
outcome of theatch expression. If the pattern does not match, proceed as if there
was no catch clause.

Evaluation Rules:

match e‘try {
@shot
} catch @patt {
@mitt
} finally {
@fin
FA

define s2 := scope sprout

define [val, _]:=try{
eval(shot, s2)

} catch ex ? (testMatch(patt, s2, ex) =~ [s3]) {
eval(mitt, s3)

} finally {
eval(fin, s2)

}

/lif we get here

[val, scope]

36

The E Language Reference Manual

Expressions

CHAPTER 2 The E Language
Grammar

(** An actual implementation may choose to expand differently or not at all, as
long as there is no observable difference. In particular, user-visible parse tree pro-
duced by the:...: form must produce parse trees according to the canonical
expansion. **)

The E Language Reference Manual 37

ELang Utilities

CHAPTER 3 ELang Utilities

Scope Building Blocks

Scope

Slot

FinalSlot

LamportSlot

38

The E Language Reference Manual

Scope Building Blocks

CHAPTER 4 Upgrading Behaviors

are defined by the Object-Definition and Plumbing-Definition expressions below.
When their initial param hasdef1iner, this name serves two purposes. (**This
needs its own separate section somewhere. **)

1) Thedef1iner is the defining occurence of a noun. At runtime, the definition
evaluates to an object, which becomes the initial value of a variable of the
definer’s name. This conventional use only employs the noun name-space.

2) The object produced by case #1 is a combination of two ingredients: behavior
and state. The behavior is statically described by the code of the defining expres-
sion. All objects produced by evaluating such defining expressioivsséaaceof

this expression, differing from each other only in their state (captured from their
lexical context at evaluation time). For both upgrade-for-prototyping and upgrade-
for-release, we need to be able to change the code that already instantiated objects
obey.

If the initial param has definer, and when the initigbaram of each such lexi-

cally enclosing definitions is also haslafiner, the path of these names is the
Behavior-name. A development context that maintains an association of Behavior-
names to behaviors can upgrade old behaviors in place to reflect newly accepted
code. If the instances designate their behavior by reference to these same mutable
behavior objects, then their behavior is upgraded as a result.

The E Language Reference Manual 39

Upgrading Behaviors

40

The E Language Reference Manual

	CHAPTER 1 The E Kernel Language Reference Manual
	E Kernel Language Quick Reference Card
	Helper Productions
	pattern: any of the following
	expr: any of the following

	Meta-Interpreter Setup
	Specification by Meta-Interpreter Enhancement
	Name Spaces
	1. Keywords are reserved for use by the grammar, and eventually, perhaps by user- defined macros ...
	2. Nouns are E’s term for variable names, since they are a way to refer to things. Every use-occu...
	3. Verbs are E’s terms for method or selector names, since they are a way to request actions. The...
	4. Behavior-names. For all the elegance of anonymous closures, to my knowledge no existing system...

	Meta-Interpreter Skeleton: Evaluation
	1. Static Correspondence expr: noun -> pattern: definer The statically analyzable correspondence ...
	2. Lexical Loopup scope[identifier] -> slot A scope is an immutable mapping from names to slots. ...
	3. Mutable State slot getValue -> reference # reading a variable’s value slot setValue(expr) # as...
	4. Designation object reference -> object The value returned by step 3 shouldn’t be thought of as...
	1. Success, in which case eval returns a pair of a resulting value and a resulting scope. The res...
	2. Failure, in which case eval throws an object as the exception indicating what problem occured....
	3. Escape, as documented in the semantics of escape below. Both failure and escape are forms of n...

	Meta-Interpreter Skeleton: Pattern Matching
	1. If the match is successful, testMatch returns a one-element array containing a scope derived f...
	2. If the match is unsuccessful, testMatch returns null.
	3. Various components of the match may perform a non-local exit (failure or escape), in which cas...

	Miscellaneous Interpreter Functions

	Defining Behaviors: Method & Matcher
	Method Definition
	Evaluation Rule:

	Matcher Definition
	Evaluation Rule:

	Params & Patterns
	The Definer Param
	testMatch Rule:

	The Ignore Param
	testMatch Rule:

	The SuchThat Pattern
	testMatch Rule:

	The Tuple Pattern
	1. It has at least as many elements at the number of patterns between the brackets.
	2. Each such pattern matches the corresponding tuple element
	3. The pattern after the “+” matches the remainder of the tuple.
	testMatch Rule:

	Expressions
	The Literal Expression
	Evaluation Rule:
	Examples:

	The Noun Expression
	Evaluation Rule:

	The Slot Expression
	Evaluation Rule:

	The Assignment Expression
	Evaluation Rule:

	The Sequence Expression
	Evaluation Rule:

	The Call Expression
	1. whose verb is the stated verb
	2. whose args are a tuple of the evaluation-results of the arg expressions
	3. and whose continuation is the outcome of the call.
	Evaluation Rule:

	The Send Expression
	1. whose verb is the stated verb
	2. whose args are a tuple of the evaluation-results of the arg expressions
	3. and whose continuation is the new Promise’s resolver.
	Evaluation Rule:

	The MatchBind Expression
	Evaluation Rule:

	The Definition Expression
	Evaluation Rule:

	The Methodical Expression
	1. The object expression describes the behavior of its instance.
	2. The object expression will often contain use-occurences of nouns (variable names) whose defini...
	3. Each instantiation endows the instance with a unique EQ-identity. E’s equality tests will dist...
	4. Vat-host. E is a distributed language, so its semantics makes explicit that each instance is s...
	Evaluation Rule:

	The Plumbing Expression
	Evaluation Rule:

	The Scope Expression
	Evaluation Rule:

	The Throw Expression
	Evaluation Rule:

	The Escape Expression
	Evaluation Rule:

	The Compound Expression
	Evaluation Rule:

	The Loop Expression
	Evaluation Rule:

	The If Expression
	Evaluation Rule:

	The Try-Catch-Finally Expression
	Evaluation Rules:

	CHAPTER 2 The E Language Grammar
	CHAPTER 3 ELang Utilities

	Scope Building Blocks
	Scope
	Slot
	FinalSlot
	LamportSlot
	CHAPTER 4 Upgrading Behaviors

