
CHAPTER 1 The E Kernel Language
Reference Manual
 The
 in
E’s

is
d by

of
le tail-
-

th’s

re the
solve
en-
The E language is specified in layers. At the bottom is the E kernel language.
kernel language is a subset of the regular E language -- every program written
Kernel E is also a valid E program with the same meaning. The remainder of
grammar outside the kernel subset is E’s sugar (see The E Language Grammer).
The semantics of the sugar is defined by canonical expansion to Kernel E. Th
expansion happens during parsing -- E parse trees only contain nodes define
Kernel E -- so only these are executed by the virtual machine.

To give a semantics of Kernel E it suffices to write an executable specification
the virtual machine as an interpreter of such parse trees. Following a venerab
biting tradition, this chapter presents such an interpreter written in the full E lan
guage. (An interpreter written in the same language it interprets is called a Meta-
Interpreter.)

Unfortunately, this does cause some circular-definition ambiguity. In Brian Smi
terminology[?], the interpreter absorbs some issues by mapping them onto the
same issues in the language in which the interpreter is written. When these a
same languages, this leaves some issues unresolved. For the moment, we re
these ambiguities only informally in the text. The bootstrap E interpreter is ess
tially a transliteration into Java of the interpreter presented here.
The E Language Reference Manual 1

The E Kernel Language Reference Manual

2

of the
 of
Since this chapter is not concerned about surface syntax, the BNF statements
kernel productions leave out non-structural grammatical detail, such as issues
precedence and associativity. See The E Language Grammar for these.
The E Language Reference Manual

E Kernel Language Quick Reference Card

ase

re
E Kernel Language Quick Reference Card

In the pseudo-BNF used here, Terminals (tokens emitted by the lexer) are either
quoted bold-faced strings, or are names that begin with an upper-case letter. Non-
terminals (forms defined by this grammar) are names that begin with a lower-c
letter. A question mark suffix on a form means the appearance of the form is
optional. An asterisk suffix means zero or more repetitions of that form. If the
asterisk is immediately followed by a punctuation character, these repetitions a
separated by that puntuation character.

Helper Productions

����� ����	
�
��

��	
��� �	�	�	�	�� ���� ������ ��		����� ������ ������

����

������

��	�
��� ���	�
��	�
��	�
��	�
� ��		��� ������

����

������

pattern: any of the following

������ ���
��� �
�����

���
���� ����	
�
�� ������ ����

������ ������

� �
!
�	� ��		��� �""""� ����

	 �#�� �$$$$� ��		����� �%%%%� �&&&&� ��		���
The E Language Reference Manual 3

The E Kernel Language Reference Manual

4

expr: any of the following

#
	���#� '
���	����(
	���# �)� �#�(
	���#

� *	�
��(
	���# � +
��(
	���#

�� �� ����	
�
��

�#�	� �,,,,� �� �

���
��� �� � �����----� ����

��. ����� ���� �////� ����

��##� ���� ���� ������ ������ ������

����� ���� �00001111� ���� ������ ������ ������

��	�
'
��� ���� �----2222� ��		���

�
	� ����
����
����
����
������ ��		��� ��-�-�-�-� ����

��	
��
��#� ����
����
����
����
������ ����� ������

��	
���

��	�
��"

������

�# ��
��� ����
����
����
����
������ ����� ��	�
��

������ ����������������������

	
��3� �	
��3	
��3	
��3	
��3� ����

������� �������������������������� ����� ������ ���� ������

����� ��� ������ ���� ������

#���� �#���#���#���#���� ������ ���� ������

�� �
�
�
�
�� ������ ���� ������ ������

����

������ �����####��������� ������

����

������

	�4� �	�4	�4	�4	�4� ������

����

������ �������	�
�	�
�	�
�	�
� ��		��� ������

����

�������" ���
��##4�
��##4�
��##4�
��##4� ������

����

�������"
The E Language Reference Manual

Meta-Interpreter Setup

g in
 secu-
ent -
rad-
ies

E

inter-
ies. A

tin-
e
top of

ed to
iator
 For
arter.
bject

 pro-
ere
Meta-Interpreter Setup

Specification by Meta-Interpreter Enhancement

Defining a computational model that deals with security, upgrade, and debuggin
one step is too hard. Rather, we take it in stages. There is a danger of losing
rity when introducing support for either upgrade or debugging, so we first pres
- as the contents of this chapter -- a meta-interpreter for a secure but non-upg
able, non-debuggable E. In Brian Smith terminology, this meta-interpreter reif
eval but absorbs apply and capability security. (** need to explain this! **) As a
result, interpreted subworlds can work transparently with non-interpreted con-
texts. Indeed, this is the basis for the transparent inter-operation of Java and
objects.

This enables us to define upgrade and debugging support as enhanced meta-
preters, such that we can design and understand the resulting security propert
real implementation can then provide the behavioral equivalent of allowing (not
requiring) code to be run under such an enhanced interpreter. This clearly con
ues to be a faithful and secure implementation of the semantics specified by th
unenhanced interpreter, since one could have run the enhanced interpreter on
it.

The resulting enhanced interpreter gives us clear answers to the “who is allow
do-or-see what?” issues needed for debugging securely. Basically, the instant
of an interpreted subworld holds the only debugging capabilities to that world.
anyone else to have debugging access, they must get it from the interpreter-st
However, the interpreter-starter can only obtain a debugger’s-eye-view on an o
if they also have the object. Not surprisingly, this follows KeyKOS discipline
rather well. Ironically, these same debugging hooks also enhance security, by
viding us a discretion check enabling confinement. (** explain & refer somewh
**)
The E Language Reference Manual 5

The E Kernel Language Reference Manual

6

user-
pe,

y one
ly
,
ver,

the
tween

ge
 new
ing

iners

port

he

he
Name Spaces

1. Keywords are reserved for use by the grammar, and eventually, perhaps by
defined macros (syntactic extensions). Each keyword is its own Terminal ty
and these are not identifiers. Some keywords are reserved for future use.

2. Nouns are E’s term for variable names, since they are a way to refer to things.
Every use-occurence of a variable name is a �� �, and corresponds to a defin-
ing-occurence -- or ���
��� -- of the same name. The rules for matching
noun to definer are purely static.

In the kernel language, each use-occurence statically corresponds to exactl
defining-occurence by a simple rule: the scope of a definer extends textual
left-to-right from the point of its definition until the corresponding close curly
except where it is shadowed by an inner definition of the same name. Howe
the definition of corresponding is a bit tricky. (E’s syntactic sugar usually fol-
lows the same rule, with the exception of the for-loop and conditional-or
expressions.)

3. Verbs are E’s terms for method or selector names, since they are a way to
request actions. The defining-occurence appears in a method definition, and
use-occurence occurs in a call or send expression. The correspondence be
the two is many-to-many and not statically determinable.

4. Behavior-names. For all the elegance of anonymous closures, to my knowled
no existing systems upgrade old instances of these to behave according to
versions of their code. By contrast, behavior-names in E’s object and plumb
expressions enable such upgrades. Behavior names are composed from def
according to the rules in Upgrading Behaviors.

The following meta-circular interpreter ignores upgrade and debugging-sup
issues. Without these issues,

define foo { ... }

is equivalent to
define foo := define _ { ... }

since the remaining significance of foo is only as a definer .

Meta-Interpreter Skeleton: Evaluation

As with the Lambda Calculus and related languages (most notably Scheme), t
heart of computation within an object is the evaluation of an expression in a lexical
scope. E’s expressions are exactly those kernel parse node types defined by t
The E Language Reference Manual

Meta-Interpreter Setup

p-
 E
but

er
of an
lt in

ent.

 the

riable
efiner
to
s use

static

ssion
ot.
 allo-
lues.

ed is

ide of
y
 the

 as a
���� production above. In the Lambda Calculus, a scope is an immutable ma
ping from names (in E, nouns) to values. In the non-debuggable, non-upgradable
presented here, a scope is also an immutable mapping from nouns to values,
these values are termed slots, since they are expected to hold a variable’s value.
Slots are similar to locations in Scheme’s semantics, except that the E programm
can bind whatever object they want to be a noun’s slot, and can obtain the slot
in-scope noun. A primitive mutable slot type is available -- and used by defau
the expansion of the sugar language -- enabling classic side effects by assignm

So altogether, we have four distinct indirections to get from a variable name to
object it designates:

1. Static Correspondence
����� �� � 15 ��		���� ���
���
The statically analyzable correspondence between use-occurences of a va
names (noun expressions) and a defining occurence of the same name (a d
pattern). In the kernel language, this strictly follows the left-to-right definer
corresponding close curly rule. The interpreter presented below makes les
of this static analyzability than it probably should, instead managing scopes
carefully so that the run-time name/scope uniqueness exactly matches the
correspondence rule.

2. Lexical Loopup
�����$
���	
�
��% 15 �#�	
A scope is an immutable mapping from names to slots. Each time an expre
is evaluated, a distinct scope is provided, so it will often look up a distinct sl
For example, the equivalent of object’s instance variable storage is a scope
cated per-instance that maps instance variable names to slots holding the va
(Note that E has no distinct notion of instance variables. The effect describ
an outcome of the semantics presented here.)

3. Mutable State
�#�	 ��	6�# � 15 ��������� # reading a variable’s value
�#�	 ��	6�# ������� # assignment
When a variable name is used in a noun expression (as other than the left-s
an assignment), this turns into a slot lookup as described above, followed b
asking that slot for its current value. Assignment is turned into a request to
slot to change its value. A ����-expression skips step three, and just returns
the slot itself as the value of the expression. Variable can vary precisely because
slots can change their value over time.

4. Designation
��7��	 ��������� 15 ��7��	
The value returned by step 3 shouldn’t be thought of as the object itself, but
The E Language Reference Manual 7

The E Kernel Language Reference Manual

8

uted
lice
n
ct
is

e, and
and a

ng
ntain-

ing
val

oot-
g
d
 for
-
tem,
 To
ach
 in the
reference (or pointer, or capability) to the object. When drawing a heap of
objects, we typically depict the objects themselves as circles or blobs, and
objects references as arrows. If object Alice points at object Bob, then Alice
holds the tail of an arrow whose head is attached to Bob. Since E is a distib
language, we give these arrows more semantics than usual: in particular, A
and Bob can be on different machines, in which case the reference will spa
machines. Such DEFERRED references have a restricted semantics that refle
the inescapable difficulties of distributed computing -- like partial failure. Th
is documented fully in the E Reference Mechanics.

In Lambda Calculus, expression evaluation takes in an expression and a scop
produces a value. In E, expression evaluation similarly takes in an expression
scope, but produces an outcome. The three forms of outcome are

1. Success, in which case eval returns a pair of a resulting value and a resulti
scope. The resulting scope is a superset of the input scope, but possibly co
ing further bindings. (** need to specify shadowing rules **)

2. Failure, in which case eval throws an object as the exception indicating what
problem occured. See throw and try/catch/finally below.

3. Escape, as documented in the semantics of escape below. Both failure and
escape are forms of non-local exit.

The following meta-interpreter absorbs the call-return stack discipline, so that
returning successfully in the interpreted language is represented by eval return
successfully, and non-local exit in the interpreted language is represented by e
performing a non-local exit.

The natural object-oriented way to define the eval function would be to distribute it
into a set of eval methods defined on each expr-parse-node type. (Indeed, the b
strap interpreter written in Java does exactly this.) However, this has the wron
extensibility property: we wish to hold the definition of the kernel language fixe
over long periods of time, while we also expect to define enhanced semantics
executing E -- especially for debugging and upgrade -- by enhancing this inter
preter. Therefore we need to enable multiple interpreters to co-exist in one sys
and to allow the others to be defined by incremental modifications to this one.
do this, we write the interpreter as a simple function containing a big switch. E
branch of the switch matches one of the expression types above, and is shown
corresponding section:

define eval(expr, scope) {

switch (expr) {
The E Language Reference Manual

Meta-Interpreter Setup

ists.
ruct
nces
n

ple
ic
but

attern

hich
:

...

match e‘...‘ {

...

}

...

}

}

Meta-Interpreter Skeleton: Pattern Matching

In Lambda Calculus, defining occurences of nouns only appear in parameter l
Most programming languages also have a variable declaration/definition const
that can appear in a block of code. Where classically one has defining occure
of variable names, E instead has patterns. Where one classically binds a name to a
initial value -- by argument matching or initialization -- E instead pattern matches
the pattern against the initial value. When the pattern is the expansion of a sim
Identifier, the effect is identical to the classical case. In other words, the class
parameter variable declarations and local variable definitions are degenerate (
common!) forms of E’s pattern matching mechanism.

As with eval we define E’s pattern matching routine, testMatch, with a global func-
tion that dispatches (using E’s switch) on the type of the pattern. The Java imple-
mentation of the bootstrap interpreter instead distributes the clauses into the P
parse-node types.

define testMatch(patt, scope, specimen) {

switch (patt) {

...

match e‘...‘ {

...

}

...

}

}

The testMatch function takes in a Pattern parse-tree, a scope as the context in w
to perform the match, and a run-time value to match it against. The outcomes
The E Language Reference Manual 9

The E Kernel Language Reference Manual

10

ting

ather

ion.

n

infor-

 the
1. If the match is successful, testMatch returns a one-element array containing a
scope derived from the imput scope, but also containing any bindings resul
from the match.

2. If the match is unsuccessful, testMatch returns null .

3. Various components of the match may perform a non-local exit (failure or
escape), in which case testMatch is so exited.

As you will see below, by returning a one-element array for the success case, r
than just returning the result directly, we enable the use of matchBind expressions
in the interpreter to both test for success and bind the result in a compact fash

Miscellaneous Interpreter Functions

The mustMatch function is like testMatch, except that an unsuccessful match
results in failure rather than returning null, and therefore a successful match ca
just return the scope directly. If mustMatch returns, it will always return a scope.

define mustMatch(patt, scope, specimen) {

define [result] := testMatch(patt, scope, specimen)

result

}

Sometimes we need to introduce names into a scope before we have enough
mation to bind them to Slots. In this case, we reserve the names by binding them to
Promises for Slots, and then later resolve the forward reference by forwarding
corresponding Resolvers.

define reserve(names, scope) {

define resolvers := TableEditorImpl()

for name in names {

define [prom, res] := Promise()

scope := scope with(name, prom)

resolvers[name] := res

}

[resolvers snapshot, scope]

}

The E Language Reference Manual

Meta-Interpreter Setup

y
 the

each

tch.
Given a pattern and a scope, reserve reserves all names this pattern would bind b
returning a pair of a mapping and a new scope. This new scope is derived from
original by binding each name to a promise for a new slot. The mapping maps
of these names to the corresponding Resolver.

define resolve(resolvers, scope) {

for name => res in resolvers {

res forward(scope[name])

}

}

Should the pattern whose bindings were reserved succeed at matching, resolve will
resolve the previous reservations to the slots resulting from the successful ma
The E Language Reference Manual 11

The E Kernel Language Reference Manual

12

’s

n
ssion.

re
Defining Behaviors: Method & Matcher

Classically, an object is an encapsulated package of state and behavior, and E
semantics reflects this faithfully.

Objects are defined by the object expressions, of which there are two kinds:
methodical expressions -- for defining methodical objects, and plumbing expres-
sions, for defining objects that act as message plumbing. An object expressio
evaluates in a scope to an object that behaves as described by the object expre
For example, the following program in the full E language

define Point(x, y) {

define self {

to getX {x}

to getY {y}

}

}

Sample command-line interaction in the context of the above definition:

? define pt := Point(3, 5)

? pt getX

value: 3

expands into the following Kernel E program:

define Point : mutable {

to run(x : final, y : final) {

define self : final {

to getX() {x}

to getY() {y}

}

}

}

? define pt : mutable := Point run(3, 5)

? pt getX()

value: 3

In the original program, it seems we’ve defined Point to be a function. In the
expansion, we see that Point is actually an object with a single run method that
takes two arguments. After all, kernel-E is a pure object language: all values a
The E Language Reference Manual

Defining Behaviors: Method & Matcher

 by
ss

 def-

d
eft
nd

tate

n.

ct

e
-

hod or

objects, and all inter-object interaction (with the exception of equality) is purely
message sending. However, E’s sugar streamlines the use of objects to expre
conventional functional/procedural patterns. run is E’s default verb. If left out, it
will be supplied in the expansion to the kernel language. An apparent function
inition actually defines an object with a run method.

The behavior of Point’s run method is to define and return an object (named self
within the scope of the run method, and therefore named self to itself). By behav-
ior, we mean this is what Point does in response to a run message of two arguments.
This returned object’s behavior is similarly described by two methods: getX an
getY. (Another tasty bit of sugar is that zero-argument argument lists may be l
out of both definition and call. However, you may not leave out both the verb a
the argument list.)

This returned object acts like a conventional point object, but where does the s
of the object come from? Somehow, x and y are acting like its classical instance
variables, but there doesn’t seem to be anything special about their declaratio
Indeed there isn’t. The scope of x and y extends from their definition until the close
curly at the end of the run method. The self object expression within this scope can
therefore refer to these slots by using their names.

So the state-nouns of an object expression are those nouns used within the obje
expression that statically correspond (see above) to noun definitions outside the
object expression. An object expression evaluates in a scope to an object. Th
object’s state is the subset of this scope containing the object expression’s state
nouns. When an object receives a message, it executes a corresponding met
matcher in a scope which is a child of this state.

Method Definition

��	
��� �	�	�	�	�� ���� ������ ��		���� ������ ������

����

������

Method definitions only occur inside object expressions, and describe how the
resulting object responds to a message with the same verb and arity.
The E Language Reference Manual 13

The E Kernel Language Reference Manual

14

d arity
d

 The
If this
n pro-
esult-
on.

ond
the

hed
ody
ome
When an instance of an object expression receives a message whose name an
match one of its methods, that method is invoked in a child of the state capture
when the object was instantiated (when the object-expression was evaluated).
sequence of arguments is first matched against the sequence of parameters.
doesn’t succeed, an exception is thrown (even if the optional matcher has bee
vided). If this does succeed, the body expr is then evaluated in a child of the r
ing scope, and the outcome of expr’s evaluation is the outcome of the invocati

Evaluation Rule:

define doMethod(method, state, args) {

scope := state sprout

define patterns := method patterns

assert(args length == patterns length)

for i in 0 till(args length) {

 scope := mustMatch(patterns[i], scope, args[i])

}

eval(method bodyExpr, scope)[0]

}

Matcher Definition

��	�
��� ������	�
�	�
�	�
�	�
� ��		��� ������

����

������

A matcher describes an object’s “behavior of last resort”, ie, how it should resp
to a message when it has no method of the same verb and arity. In this case,
matcher is invoked in a child of the lexical scope captured on instantiating the
object. The message is turned into a pair (a two-element sequence) and matc
against the pattern. If this fails an exception is thrown. If this succeeds, the b
expr is evaluated in a child of the scope resulting from the match, and the outc
is the outcome of the invocation.

Evaluation Rule:

define doMatcher(matcher, state, message) {
The E Language Reference Manual

Defining Behaviors: Method & Matcher
scope := state sprout

scope := mustMatch(matcher pattern, scope, message)

eval(matcher bodyExpr, scope)[0]

}

The E Language Reference Manual 15

The E Kernel Language Reference Manual

16

right
ner
hen
a-

f

 the

ss-
s the
Params & Patterns

Params are Patterns that define at most one variable.

The Definer Param

���
���� ����	
�
�� ������ ����

Defines a new noun with the given name. The scope of this noun lasts left-to-
from the definer until the corresponding close curly, except as shadowed by in
blocks that define the same name. If we ignore for a moment what happens w
expr uses the noun it is helping to define, we have the following simpler explan
tion:

To match a definer in a scope to a specimen, first evaluate expr in that scope. I
successful, this results in a returned value and a new descendent scope. The
returned value is assumed to be a SlotMaker. A SlotMaker is an object that
responds to makeSlot(initialValue) by returning a Slot. A Slot is an object that
responds at least to getValue (no arguments), and, if it represents a MutableSlot, to
setValue(newValue). So we bind the Identifier to the result of sending
makeSlot(specimen) to the presumed SlotMaker. The scope resulting from the
definer is the original scope enhanced both by this binding of Identifier, and by any
bindings produced by expr.

The true explanation differs in the following ways:

 Since expr is to the right of Identifier, it is within Identifier’s scope. However, expr
must be evaluated before we can create the slot that the name designates. So
name starts off bound to a promise for the slot. Within this new scope, expr is eval-
uated, potentially adding yet further bindings. Assuming expr evaluates succe
fully, we proceed to make a presumed Slot as above. This object then become
resolution of the promise.

testMatch Rule:

match epatt‘@name : @expr‘ {

define [resolvers, scope2] := reserve([name], scope)

define [slotMaker, scope3] := eval(expr, scope2)
The E Language Reference Manual

Params & Patterns

ers

ed

 the
define slot := slotMaker makeSlot(specimen)

resolve(resolvers, scope with(name, slot))

[scope3]

}

There are several well known SlotMakers, and compilers and discretion-check
will often have special knowledge of some of these. For example:

define mutable makeSlot(value) {

define slot {

to getValue {value}

to setValue(newValue) {

value := newValue

}

}

}

define final makeSlot(value) {

define slot getValue {value}

}

The mutable SlotMaker makes a Slot that acts like our normal notion of an untyp
assignable (ie, mutable) variable, whereas the final SlotMaker makes a slot that
may be read but not changed.

By convention, a Type is a SlotMaker. In addition, a Type has a vouch method for
vouching for instances of the Type, and a final method to make SlotMaker that
makes final Slots. To E, all Java classes are Types, and respond according to
following three methods:

to vouch(specimen) {

a small bit of implicit coercion magic can happen here.
See The E-to-Java Binding Specification
if (self isInstance(specimen)) {

specimen

} else {

throw ... //some appropriate exception
}

}

to makeSlot(specimen) {

define value := self vouch(specimen)
The E Language Reference Manual 17

The E Kernel Language Reference Manual

18

rom
ns,

nd
at a
 be
define slot {

to getValue {value}

to setValue(newValue) {

value := self vouch(newValue)

}

}

}

to final {

define typedFinal makeSlot(specimen) {

define value := self vouch(specimen)

define slot getValue {value}

}

}

This allows types to constrain the possible values of variables in ways familiar f
statically typed languages, and in ways that enable similar compiler optimizatio
but all in term of a purely run-time semantics. For example:

define Character : final := load:java.lang.Character

...

define foo : Character := ...

...

foo := c

...

Both human and compiler know that foo can only come to hold instances of Char-
acter. If c isn’t a Character, the assignment will fail (with a thrown exception) a
foo will be unaffected. By special dispensation, when the compiler can show th
binding or assignment would always fail (even if it can’t show that it would ever
executed), it may reject the program with a compile-time error.

So, for example, if we define a subrange type:

define subrange(start, bound) {

define self {

to vouch(specimen : Number final) {

if (start <= specimen && specimen < bound) {

specimen

} else {

throw ... //some appropriate exception
}

}

The E Language Reference Manual

Params & Patterns

id it

ly

lue

ing
ent,

 trust
to makeSlot(specimen) {

... //as shown in Java class behavior above
}

to final {

... //as shown in Java class behavior above
}

}

}

(An actual system would not have so much repetition of code patterns, but avo
well involves the inheritance pattern, which should not be introduced so soon.)

If we then declare

... x : subrange(3, 5) ...

we know that in each resulting scope, x will be bound to a mutable slot that on
holds values between 3 (inclusive) and 5 (exclusive). On the other hand, if we
declare

... x : subrange(3, 5) final ...

then in each scope x will be bound to final slot whose initial and permanent va
will be in this range.

Does subrange ’s vouch need to ask Number to vouch for specimen ? In order
for subrange to vouch for specimen , it has to know that specimen will always
act like an integer within the specified range. Integers are just objects respond
to a protocol. An object acting like an integer may say it’s less than 5 one mom
and act like 6 another moment, so subrange itself needs assurance that it can
the consistency of specimen ’s behavior.

Finally, we can use the SlotMaker defineSlot to use the specimen itself as a Slot:

define defineSlot makeSlot(specimen) { specimen }

The Ignore Param

������ ������
The E Language Reference Manual 19

The E Kernel Language Reference Manual

20

ter in
ment.

 speci-
 to
alu-

 that

call,
Matches any specimen, but binds nothing. Most commonly used for a parame
a method declaration when the method has no need for the corresponding argu

testMatch Rule:

match epatt‘_‘ {

[scope]

}

The SuchThat Pattern

� �
!
�	� ��		��� �""""� ����

A suchThat pattern matches a specimen iff the contained pattern matches the
men, and in the context of the resulting bindings, the contained expr evaluates
true. If the contained pattern doesn’t match, the contained expression isn’t ev
ated.

testMatch Rule:

match epatt‘@patt ? @expr‘ {

if (testMatch(patt, scope, specimen) =~ [scope2]) {

define [ok, scope3] := eval(expr, scope2)

if (ok) { [scope3] }

}

}

Although it’s arguably bad style, the above piece of code relies on the property
an if-then acts like (indeed, expands to) an if-then-else in which the automatically
supplied else evaluates to null .

This form is especially useful when you want to express pre-conditions on the
rather than constraints on the variables. (** need examples **)
The E Language Reference Manual

Params & Patterns

ckets.

atch

iliar
The Tuple Pattern

	 �#�� �$$$$� ��		���� �%%%%� �&&&&� ��		���

Matches a tuple iff

1. It has at least as many elements at the number of patterns between the bra

2. Each such pattern matches the corresponding tuple element

3. The pattern after the “+” matches the remainder of the tuple.

Execution proceeds left-to-right, and scope accumulates left-to-right, so each m
occurs in the context of all matches to its left. A failing match prevents any
matches to its right from being attempted.

testMatch Rule:

match epatt‘[@patts...] + @restPatt‘ {

define length := patts length

escape return {

if (length > specimen length) {

return(null)

}

for i in 0 till(length) {

if (testMatch(patts[i],scope, specimen[i]) =~ [s2]){

scope := s2

} else {

return(null)

}

}

}

testMatch(restPatt, scope, specimen slice(length))

}

This allows patterns to extract values from nested tuple structures in ways fam
to Prolog programmers. A silly example:

define car([x] + _) {x}

define cdr([_] + y) {y}
The E Language Reference Manual 21

The E Kernel Language Reference Manual

22

uch

,
rn,

, if
In practice, the main use of this is to obtain mutiple resturn values from a call, s
as our own eval function. Above, when we said

define [ok, scope2] := eval(expr, scope)

this expands to

define [ok, scope2] + _x ? _x == [] := eval(expr, scope)

(all expansion-created temporary names begin with an underscore)

On the right, eval was returning a tuple (immutable array) of two elements. On
the left, the zero’th element of this array is matched against the zero’th pattern
binding the noun ok , and the one’th element is matched against the one’th patte
binding scope2 . The remaining part of the tuple is matched against “_x ? _x ==

[] ” which only succeeds if the remaining part of the tuple is the empty tuple, ie
the original tuple was exactly two elements long.
The E Language Reference Manual

Expressions

ing

e is
yet-
 for
ger-
Expressions

The Literal Expression

����� '
���	����(
	���# �)� �#�(
	���#

� *	�
��(
	���# � +
��(
	���#

This simply evaluates to the described value. The syntax is as in Java, includ
full Unicode support, but without a precision limit on integers.

Evaluation Rule:

match x ? x isa(LiteralExpr) {

[x getValue, scope]

}

Examples:

35

3.14159

“Hello world\n”

‘\\’

The Noun Expression

����� �� �

Evaluates to the current value of the variable, according to the Slot. If the nam
bound only to a DEFERRED reference to a Slot (typically a Promise for a not-
resolved forward definition), then the Noun expression evaluates to a Promise
an eventual value of the eventual Slot. (** The ordering weakness seems dan
ous. Should it simply error instead? **)
The E Language Reference Manual 23

The E Kernel Language Reference Manual

24

y

)
es-
Evaluation Rule:

match noun ? (noun isa(NounExpr)) {

define getValue(slot) {

if (E state(slot) == “DEFERRED”) {

slot <- getValue

} else {

slot getValue

}

}

[getValue(scope[noun name]), scope]

}

Rather than being in Kernel E, the noun production could have been defined b
expansion, as the noun

foo

is equivalent to the expression

(&foo) getValue

The Slot Expression

�#�	� �,,,,� �� �

Evaluates to the slot which holds the value of the variable.

Evaluation Rule:

match e‘&@noun‘ {

[scope[noun name], scope]

}

This is used in the expansion of the conditional-and (&&) and conditional-or (||
sweeteners, but its most intriguing use is for one-way eventual constraint expr
sions:

define x : observableSlot := 3
The E Language Reference Manual

Expressions

x

Slot

-

define y : observableSlot := 5

define z : constrain := ever(&x) + ever(&y)

With the appropriate definitions of observableSlot , constrain, and ever, we can
read this as “constrain z to always eventually be the sum of the latest values of
and y”. See Lamport Slots and Constraint Programming.

The Assignment Expression

����� �� � ��-�-�-�-� ����

Changes the value of the variable to the new value. More precisely, asks the
for this noun in the current scope to change its current value to the value of the
expression.

If the variable was declared final , an implementation may (**must??**) reject
this statically rather than dynamically.

Evaluation Rule:

match e‘@leftNoun := @rightExpr‘ {

define slot := scope[leftNoun name]

define [result, scope2] := eval(rightExpr, scope)

[slot setValue(result), scope2]

}

An example of multiple facets sharing common mutable slots:

define readWritePair(value) {

[define reader() { value },

 define writer(newValue) { value := newValue }]

}

readWritePair returns two function-objects that share common state: the slot
named “value”. Each time readWritePair is called, it returns a new pair of func
tions that share a new Slot:

? define [r1,w1] := readWritePair(“foo”)

? define [r2,w2] := readWritePair(“foo”)
The E Language Reference Manual 25

The E Kernel Language Reference Manual

26

 can

n it.

 tradi-

if-
s that
uthor-

, we
e
oce-
from
y
ame
ttach-

res-
? w1(“bar”)

? w2(“baz”)

? r1()

value: bar

? r2()

value: baz

Since the two objects in a pair provide different powers over shared state -- one
only read and the other can only write -- we often refer to them of two facets of
composite object defined by this state and all the behaviors that can operate o
Although it is often a useful way to speak, only the individual facets are actual
objects as far as E is concerned. This technique demonstrates that the power
tionally associated with capability bits -- to have different references to an object
convey different authorities -- is easily achived with nothing but pure objects. D
ferent authority over common state is represented by access to different object
share that state. All references to the same object grant equal authority: the a
ity to invoke any of its public methods.

In some sense, this is all implied by the early definitions of objects: Classically
say an object is a combination of state and behavior. Well, before objects ther
were modules, which were a combination of file-scope global variables and pr
dures that had them in scope. (Remember C’s file-static variables?) In going
modules to classes, we changed the data a module could access to be multipl
instantiable. In other words, different instances of the same class attach the s
code with different data. The facet technique above shows the power of also a
ing different code to the same data.

The Sequence Expression

����� ���� �////� ����

Evaluates these in order. The resulting value is the value of the right-hand exp
sion.

Evaluation Rule:

match e‘@leftExpr ; @rightExpr‘ {

define [_, scope2] := eval(leftExpr, scope)
The E Language Reference Manual

Expressions

eft-to-

, the
t eval-
 any
y the

e
tinua-
tion

**)
eval(rightExpr, scope2)

}

The Call Expression

����� ���� ���� ������ ����� ������

First, the receiver expression and the argument expressions are evaluated in l
right order. The receiver is then called synchronously with a message

1. whose verb is the stated verb

2. whose args are a tuple of the evaluation-results of the arg expressions

3. and whose continuation is the outcome of the call.

This is conventional do-it-now call-return ordering, where the receiver returns
before the caller continues. Since the caller is blocked until the receiver returns
receiver must be in the same vat as the caller, ie, the receiver expression mus
uate to a KEPT reference. Since both caller and receiver are in the same Vat,
side effects made by the receiver to shared synchronous state must be seen b
caller after the call.

Although it’s not apparent in the current meta-interpreter, two forms of outcom
can be reported to the continuation: success -- reported by forwarding the con
tion to the resulting value, and exceptional -- reported by smashing the continua
with the explanatory problem. (** update terminology and account for escape

Evaluation Rule:

match e‘@receiverExpr @verb (@argExprs...)‘ {

define [rec, scope2] := eval(receiverExpr, scope)

define args := []

for argExpr in argExprs {

define [arg, scope3] := eval(argExpr, scope2)

args += [arg]

scope2 := scope3

}

[E call(rec, verb name, args), scope2]

}

The E Language Reference Manual 27

The E Kernel Language Reference Manual

28

eft-to-
pend-

ise,
ling
es

 can-

e
lver

h the
The Send Expression

����� ���� �01010101� ���� ������ ����� ������

First, the receiver expression and the argument expressions are evaluated in l
right order. A new Promise is created, and we queue onto the receiver’s vat a
ing delivery to the receiver of a message

1. whose verb is the stated verb

2. whose args are a tuple of the evaluation-results of the arg expressions

3. and whose continuation is the new Promise’s resolver.

The value of the send expression is immediately the acceptor of the new Prom
and the sender immediately continues. This is E’s optimistic event-loop schedu
primitive, where the sender continues without blocking, and the receiver receiv
the message in a brand new event. Any side effect performed by the receiver
not affect the sender’s event. (Chronological encapsulation)

Although it’s not apparent in the current meta-interpreter, two forms of outcom
can be reported to the continuation: success -- reported by forwarding the reso
to the resulting value, and exceptional -- reported by smashing the resolver wit
explanatory problem. (** update terminology and account for escape **)

Evaluation Rule:

match e‘@receiverExpr <- @verb (@argExprs...)‘ {

define [rec, scope2] := eval(receiverExpr, scope)

define args := []

for argExpr in argExprs {

define [arg, scope3] := eval(argExpr, scope2)

args += [arg]

scope2 := scope3

}

[E send(rec, verb name, args), scope2]

}

The E Language Reference Manual

Expressions

 is a

res-
the
-
lue of

cep-
er.
he
s, and
s on
The MatchBind Expression

����� ���� �-2-2-2-2� ��		���

The expression is evaluated, and then matched against the pattern. The value
boolean reporting the outcome of the match.

Evaluation Rule:

match e‘@leftExpr =~ @patt‘ {

define [specimen, scope2] = eval(leftExpr , scope)

if (testMatch(patt, scope2, specimen) =~ [scope3]) {

[true, scope3]

} else {

for name in expr namesOut {

scope := scope withBrokenBinding(name)

}

[false, scope]

}

}

The Definition Expression

����� �������
����
����
����
��� ��		��� �����----� ����

We first reserve all the names defined by the pattern. Then we evalate the exp
sion in the resulting scope, producing the specimen. We then match this with
pattern. If this fails, we throw an exception. If this succeeds, the bindings pro
duced by the match become the resolution of our reserved names, and the va
the define expression is the specimen.

The reservation mechanism is to initially bind each name to a new Promise ac
tor, and then to resolve the reservation by forwarding the corresponding resolv
For you Lispers, this is a letrec than works. Besides capturing such names on t
right side in object expressions, one may also asynchronously send it message
store it in data structures. The cleanliness of the E inheritance pattern depend
the cleanliness of this definition.
The E Language Reference Manual 29

The E Kernel Language Reference Manual

30

y four

ch
 the

lity

ach

t.

it
mpt
ose

-
age
Evaluation Rule:

match e‘define @patt := @rightExpr‘ {

define [rslvs, scope2] := reserve(patt namesOut, scope)

define [specimen, scope3] := eval(rightExpr, scope2)

resolve(rslvs, mustMatch(patt, scope, specimen))

[specimen, scope3]

}

The Methodical Expression

��	
��
��#� ����
����
����
����
������ ����� ������

��	
���

��	�
��"

������

An object expression evaluates to an object which is an instance of the object
expression, and this particular case of evaluation is also called instantiation.
Debugging issues aside, the semantics of such an instance is fully described b
attributes.

1. The object expression describes the behavior of its instance.

2. The object expression will often contain use-occurences of nouns (variable
names) whose defining occurence is outside the object-expression. For ea
such name, the resulting variable in the instantiating context is captured by
instance. The state of the instance consists of such variables.

3. Each instantiation endows the instance with a unique EQ-identity. E’s equa
tests will distinguish otherwise-equivalent instances on this basis.

4. Vat-host. E is a distributed language, so its semantics makes explicit that e
instance is somewhere. E’s notion of a place for an object to be is a Vat. Each
Vat hosts a number of objects, and all objects are hosted by exactly one Va

On receiving a message, an instance will first attempt to find a matching explic
method (a method appearing in the object expression). Failing that, it will atte
to find a matching Miranda method -- a set of standard methods provided for th
objects that don’t provide overrides of their own. (This primitive form of inherit
ance in the only kind directly supported by the E kernel.) Failing that, the mess
The E Language Reference Manual

Expressions

w a

atch-
is given to the matcher if any. If there isn’t any, the Miranda matcher is to thro
NoSuchMethodException, describing the message that couldn’t dispatch.

Evaluation Rule:

match e‘define @param { @methods... @optMatcher }‘ {

define [rslvs, scope2] := reserve(param, scope)

define state := ... //subset of scope2 used freely in the behavior
define obj match [verb, args] {

escape return {

for meth in methods + mirandas {

if (verb == meth verb ...

 && args length == meth arity) {

return(doMethod(meth, state, args))

}

}

if (optMatcher != null) {

doMatch(optMatcher, state, [verb, args])

} else {

throw ... //some appropriate exception
}

}

}

resolve(rslvs, mustMatch(param, scope, obj))

[obj, scope2]

}

The Plumbing Expression

����� �������
����
����
����
��� ����� ��	�
��

A plumbing expression is much like a methodical expression with no methods,
except that no Miranda methods are provided either. This allows one to define
“message plumbing” -- objects that forward messages generically without disp
ing on them.
The E Language Reference Manual 31

The E Kernel Language Reference Manual

32

 for
tside

lua-

ld
Evaluation Rule:

match e‘define @param @m‘ ? (m isa(Matcher)) {

define [rslvs, scope2] := reserve(param, scope)

define state := ... //subset of scope2 used freely in m
define obj match [verb, args] {

doMatch(m, state, [verb, args])

}

resolve(rslvs, mustMatch(param, scope, obj))

[obj, scope2]

}

The Scope Expression

����� ����������������������

Reifies the current lexical environment. This environment should contain slots
exactly those variables whose definers are in scope, and, if they are defined ou
the current object or plumbing expression, are used freely by that expression.

Evaluation Rule:

match e‘scope‘ {

[scope, scope]

}

The Throw Expression

����� �				
��3
��3
��3
��3� ����

Evaluates expr and smashes the continuation with the resulting problem. Eva
tion terminates outward through enclosing try blocks, running their finally
clauses, until a matching catch -clause is found (or unless an intervening finally
clause hijacks flow of control by initiating its own non-local termination). Shou
The E Language Reference Manual

Expressions

itiat-

e
e of

g
sion’s
s a
evaluation terminate all the out to the event loop, the resolver of this event’s in
ing message is smashed with the problem.

Evaluation Rule:

match e‘throw @problemExpr‘ {

define [problem, _] := eval(problemExpr, scope)

throw problem

}

The Escape Expression

����� �������������������������� ����� ������

����

������

First, in a child of the current scope, param is bound to an escapeHatch for exiting
the escape expression, and then expr is evaluated in the resulting scope. If th
escapeHatch is not invoked, expr completes normally, and its value is the valu
the escape expression. If the escapeHatch is called with a run(val) during the
evaluation of expr, expr terminates outward from that point (running intervenin
finally clauses), until the escape expression is reached. The escape expres
value is then the argument to run() . As a convenience, an escapeHatch also ha
no-argument run() method that is equivalent to run(null) .

Once an escape expression has completed, its escapeHatch is disabled.

Evaluation Rule:

match e‘escape @param { @bodyExpr }‘ {

escape hatch {

scope := mustMatch(param, hatch, scope sprout)

define [val, _] := eval(expr, scope)

[val, scope]

}

}

The E Language Reference Manual 33

The E Kernel Language Reference Manual

34

e

 loop
The Compound Expression

����� ������

����

������

Provides a nested scope, so that definers in expr don’t introduce names into th
enclosing conext.

Evaluation Rule:

match e‘{ @bodyExpr }‘ {

define [val, _] := eval(bodyExpr, scope sprout)

[val, scope]

}

The Loop Expression

����� �####������������� ������

����

������

Evaluates expr repeatedly, each time in a new child of the current scope. The
can only be exited by throws or escape hatches.

Evaluation Rule:

match e‘loop { @bodyExpr }‘ {

loop {

eval(bodyExpr, scope sprout)

}

}

The E Language Reference Manual

Expressions

alu-
is the
d of
The If Expression

����� �

����� ������ ���� ������ ������

����

������ ��#���#���#���#��� ������

����

������

In a child of the current scope, evaluates the condition to a boolean. If true, ev
ates the then expression in the context of the resulting bindings, and the result
value of the if expression. If false, evaluates the else expression in a new chil
the original scope, and the result is the value of the if expression.

Evaluation Rule:

match e‘if (@cond) {@then} else {@els}‘ {

define [ok, scope2] := eval(cond, scope sprout)

define [val, _] := if (ok) {

eval(then, scope2)

} else {

eval(els, scope sprout)

}

[val, scope]

}

The Try-Catch-Finally Expression

����� �	�	�	�	�4444� ������

����

������ ����	���	���	���	�

� ��		��� ������

����

�������" ���
�
�
�
�����##4�##4�##4�##4� ������

����

�������"
The E Language Reference Manual 35

The E Kernel Language Reference Manual

36

in a

 of

en

ere
In a child of the current scope, evaluate the first expr. If it completes normally,
new child of the original scope, evaluate the finally expr if any, and the outcome
of try expr is the outcome of the first expr, unless hijacked by the finally
expression.

If expr terminates by throwing (ie, by smashing its continuation), in a new child
the original scope attempt to match the problem with the catch clause’s pattern. If
it matches, run the catch expression in the context of the resulting bindings. Th
evaluate the finally clause as above. The outcome of the try expression is the
outcome of the catch expression. If the pattern does not match, proceed as if th
was no catch clause.

Evaluation Rules:

match e‘try {

@shot

} catch @patt {

@mitt

} finally {

@fin

}‘ {

define s2 := scope sprout

define [val, _] := try {

eval(shot, s2)

} catch ex ? (testMatch(patt, s2, ex) =~ [s3]) {

eval(mitt, s3)

} finally {

eval(fin, s2)

}

//if we get here
[val, scope]

}

The E Language Reference Manual

Expressions

 pro-

CHAPTER 2 The E Language
Grammar

(** An actual implementation may choose to expand differently or not at all, as
long as there is no observable difference. In particular, user-visible parse tree
duced by the e‘...‘ form must produce parse trees according to the canonical
expansion. **)
The E Language Reference Manual 37

ELang Utilities

38
CHAPTER 3 ELang Utilities

Scope Building Blocks

Scope

Slot

FinalSlot

LamportSlot
The E Language Reference Manual

Scope Building Blocks

w.

.

ior
res-

ir
de-

bjects

vior-
ted
table
CHAPTER 4 Upgrading Behaviors

are defined by the Object-Definition and Plumbing-Definition expressions belo
When their initial param has a ���
���, this name serves two purposes. (**This
needs its own separate section somewhere. **)

1) The ���
��� is the defining occurence of a noun. At runtime, the definition
evaluates to an object, which becomes the initial value of a variable of the
���
���8� name. This conventional use only employs the noun name-space

2) The object produced by case #1 is a combination of two ingredients: behav
and state. The behavior is statically described by the code of the defining exp
sion. All objects produced by evaluating such defining expressions are instances of
this expression, differing from each other only in their state (captured from the
lexical context at evaluation time). For both upgrade-for-prototyping and upgra
for-release, we need to be able to change the code that already instantiated o
obey.

If the initial param has a ���
���, and when the initial ����� of each such lexi-
cally enclosing definitions is also has a ���
���, the path of these names is the
Behavior-name. A development context that maintains an association of Beha
names to behaviors can upgrade old behaviors in place to reflect newly accep
code. If the instances designate their behavior by reference to these same mu
behavior objects, then their behavior is upgraded as a result.
The E Language Reference Manual 39

Upgrading Behaviors

40
 The E Language Reference Manual

	CHAPTER 1 The E Kernel Language Reference Manual
	E Kernel Language Quick Reference Card
	Helper Productions
	pattern: any of the following
	expr: any of the following

	Meta-Interpreter Setup
	Specification by Meta-Interpreter Enhancement
	Name Spaces
	1. Keywords are reserved for use by the grammar, and eventually, perhaps by user- defined macros ...
	2. Nouns are E’s term for variable names, since they are a way to refer to things. Every use-occu...
	3. Verbs are E’s terms for method or selector names, since they are a way to request actions. The...
	4. Behavior-names. For all the elegance of anonymous closures, to my knowledge no existing system...

	Meta-Interpreter Skeleton: Evaluation
	1. Static Correspondence expr: noun -> pattern: definer The statically analyzable correspondence ...
	2. Lexical Loopup scope[identifier] -> slot A scope is an immutable mapping from names to slots. ...
	3. Mutable State slot getValue -> reference # reading a variable’s value slot setValue(expr) # as...
	4. Designation object reference -> object The value returned by step 3 shouldn’t be thought of as...
	1. Success, in which case eval returns a pair of a resulting value and a resulting scope. The res...
	2. Failure, in which case eval throws an object as the exception indicating what problem occured....
	3. Escape, as documented in the semantics of escape below. Both failure and escape are forms of n...

	Meta-Interpreter Skeleton: Pattern Matching
	1. If the match is successful, testMatch returns a one-element array containing a scope derived f...
	2. If the match is unsuccessful, testMatch returns null.
	3. Various components of the match may perform a non-local exit (failure or escape), in which cas...

	Miscellaneous Interpreter Functions

	Defining Behaviors: Method & Matcher
	Method Definition
	Evaluation Rule:

	Matcher Definition
	Evaluation Rule:

	Params & Patterns
	The Definer Param
	testMatch Rule:

	The Ignore Param
	testMatch Rule:

	The SuchThat Pattern
	testMatch Rule:

	The Tuple Pattern
	1. It has at least as many elements at the number of patterns between the brackets.
	2. Each such pattern matches the corresponding tuple element
	3. The pattern after the “+” matches the remainder of the tuple.
	testMatch Rule:

	Expressions
	The Literal Expression
	Evaluation Rule:
	Examples:

	The Noun Expression
	Evaluation Rule:

	The Slot Expression
	Evaluation Rule:

	The Assignment Expression
	Evaluation Rule:

	The Sequence Expression
	Evaluation Rule:

	The Call Expression
	1. whose verb is the stated verb
	2. whose args are a tuple of the evaluation-results of the arg expressions
	3. and whose continuation is the outcome of the call.
	Evaluation Rule:

	The Send Expression
	1. whose verb is the stated verb
	2. whose args are a tuple of the evaluation-results of the arg expressions
	3. and whose continuation is the new Promise’s resolver.
	Evaluation Rule:

	The MatchBind Expression
	Evaluation Rule:

	The Definition Expression
	Evaluation Rule:

	The Methodical Expression
	1. The object expression describes the behavior of its instance.
	2. The object expression will often contain use-occurences of nouns (variable names) whose defini...
	3. Each instantiation endows the instance with a unique EQ-identity. E’s equality tests will dist...
	4. Vat-host. E is a distributed language, so its semantics makes explicit that each instance is s...
	Evaluation Rule:

	The Plumbing Expression
	Evaluation Rule:

	The Scope Expression
	Evaluation Rule:

	The Throw Expression
	Evaluation Rule:

	The Escape Expression
	Evaluation Rule:

	The Compound Expression
	Evaluation Rule:

	The Loop Expression
	Evaluation Rule:

	The If Expression
	Evaluation Rule:

	The Try-Catch-Finally Expression
	Evaluation Rules:

	CHAPTER 2 The E Language Grammar
	CHAPTER 3 ELang Utilities

	Scope Building Blocks
	Scope
	Slot
	FinalSlot
	LamportSlot
	CHAPTER 4 Upgrading Behaviors

